6 research outputs found

    Topology Detection for Output-Coupling Weighted Complex Dynamical Networks with Coupling and Transmission Delays

    Get PDF
    Topology detection for output-coupling weighted complex dynamical networks with two types of time delays is investigated in this paper. Different from existing literatures, coupling delay and transmission delay are simultaneously taken into account in the output-coupling network. Based on the idea of the state observer, we build the drive-response system and apply LaSalle’s invariance principle to the error dynamical system of the drive-response system. Several convergent criteria are deduced in the form of algebraic inequalities. Some numerical simulations for the complex dynamical network, with node dynamics being chaotic, are given to verify the effectiveness of the proposed scheme

    Passivity Analysis of Complex Delayed Dynamical Networks with Output Coupling

    Get PDF
    A new complex dynamical network model with output coupling is proposed. This paper is concerned with input passivity and output passivity of the proposed network model. By constructing new Lyapunov functionals, some sufficient conditions ensuring the input passivity and output passivity are obtained. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed results

    Pinning Lur’e Complex Networks via Output Feedback Control

    Get PDF
    Without requiring the full-state information of network nodes, this paper studies the pinning synchronization in a network of Lur’e dynamical systems based on the output feedback control strategy. Some simple pinning conditions are established for both undirected and directed Lur’e networks by using M-matrix theory and S-procedure technique. With the derived stability criteria, the pinning synchronization problem of large-scale Lur’e networks can be transformed to the test of a low-dimensional linear matrix inequality. Some remarks are further given to address the selection of pinned nodes and the design of pinning feedback gains. Numerical results are provided to demonstrate the effectiveness of the theoretical analysis

    Pinning Synchronization of One-Sided Lipschitz Complex Networks

    Get PDF

    Pinning Stabilization of Complex Networks Coupled with Time Delay and Disturbed with Stochastic Noise

    Get PDF
    A pinning stabilization problem of complex networks with time-delay coupling is studied under stochastic noisy circumstances in this paper. Only one controller is used to stabilize the network to the equilibrium point when the network is connected and the minimal number of controllers is used when the network is unconnected, where the structure of complex network is fully used. Some criteria are achieved to control the complex network under stochastic noise in the form of linear matrix inequalities. Several examples are given to show the validity of the proposed control criteria
    corecore