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A new complex dynamical network model with output coupling is proposed. This paper is concerned with input passivity and
output passivity of the proposed network model. By constructing new Lyapunov functionals, some sufficient conditions ensuring
the input passivity and output passivity are obtained. Finally, two numerical examples are provided to demonstrate the effectiveness
of the proposed results.

1. Introduction

Recently, there has been increasing interest in the study of
complex dynamical networks. The main reason is that many
practical systems can be characterized by various models of
complex networks. It is well known that one of the most
significant and interesting dynamical phenomena of complex
networks is the synchronization of systems. Many interesting
results on synchronization have been derived for various
complex networks [1–10]. But, it should be noticed that the
complex networks with state coupling were considered in
these papers.

To our knowledge, Jiang et al. [11] first introduced a
complex network model with output coupling without time
delays. Some conditions for synchronization were established
based on the Lyapunov stability theory. However, time delays
always exist in complex networks due to the finite speeds of
transmission and/or the traffic congestion, andmost of delays
are notable. So it is crucial for us to take the delay into the
consideration when we study complex networks. Practically,
many phenomena in nature can be modeled as complex net-
workswith output coupling.The cooperative control problem
of multiple agents has received much attention recently
since it has challenging features and many applications,
for example, large object moving, formation control, rescue

mission, and satellite clustering. It is well known that the
state of agent is difficult to be observed or measured because
of technology limitations and environmental disturbances.
For instance, the measuring of velocity is more difficult than
that of position. In some circumstances, the information of
velocity is unavailable for agents [12]. Therefore, it is quite
necessary to design protocols based on the output variables.
In this case, the closed-loop systems can be described by
the complex networks with output coupling. Hence, study of
complex networks with output coupling is very interesting
and important in both theory and application. A complex
delayed dynamical network model with output coupling
was proposed in [13, 14]. Wang and Wu [13] investigated
the output synchronization of the proposed network model,
and some criteria on local and global exponential output
synchronization were derived.

Passivity [15–33] is an important concept of system
theory and provides a nice tool for analyzing the stability
of systems and has found applications in diverse areas such
as stability, complexity, signal processing, chaos control and
synchronization, and fuzzy control. Many researchers have
studied the passivity of fuzzy systems [19–22] and neural
networks [23–28]. Liang et al. [20] discussed the passivity
and passification problems for a class of uncertain stochastic
fuzzy systems with time-varying delays. In [26] Song et al.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 792069, 9 pages
http://dx.doi.org/10.1155/2015/792069

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192723963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Mathematical Problems in Engineering

investigated the passivity for a class of discrete-time stochas-
tic neural networks with time-varying delays, and a delay-
dependent passivity condition was obtained by constructing
proper Lyapunov-Krasovskii functional. However, there are
fewwork on the passivity of complex networks [29, 30, 32, 33].
In [29, 30], Yao et al. obtained some sufficient conditions
on passivity properties for linear (or linearized) complex
networks with and without coupling delays (constant delay).
However, in practical evolutionary processes of the net-
works, absolute constant delay may be scarce and delays are
frequently varied with time. Therefore, it is important to
further study the passivity of complex networks with time-
varying delays. Wang et al. [32] considered input passivity
and output passivity for a generalized complex network with
nonlinear, time-varying, nonsymmetric, and delayed cou-
pling. By constructing some suitable Lyapunov functionals,
several sufficient conditions ensuring input passivity and
output passivity were derived. To the best of our knowledge,
the input passivity and output passivity of complex delayed
dynamical network model with output coupling have not yet
been established.Therefore, it is interesting to study the input
passivity and output passivity of complex delayed dynamical
network model with output coupling.

Motivated by the above discussions, we propose a new
complex delayed dynamical network model with output
coupling. The objective of this paper is to study the input
and output passivity of the proposed network model. Some
sufficient conditions ensuring input passivity and output
passivity are obtained by Lyapunov functional method.

The rest of this paper is organized as follows. A new
complex network model is introduced and some useful
preliminaries are given in Section 2. Several input and output
passivity criteria are established in Section 3. In Section 4, two
numerical examples are given to illustrate the effectiveness
of the proposed results. Conclusions are finally given in
Section 5.

2. Network Model and Preliminaries

Let 𝑅𝑛 be the 𝑛-dimensional Euclidean space, and let 𝑅𝑛×𝑚 be
the space of 𝑛 × 𝑚 real matrices. 𝑃 ⩾ 0 (𝑃 ⩽ 0) means that
matrix 𝑃 is real symmetric and semipositive (seminegative)
definite. 𝑃 > 0 (𝑃 < 0) means that matrix 𝑃 is real
symmetric and positive (negative) definite. 𝐼

𝑛
denotes the 𝑛×𝑛

identity matrix. 𝐵𝑇 denotes the transpose of a square matrix
𝐵. 𝐶([−𝜏, 0], 𝑅𝑛) is a Banach space of continuous functions
mapping the interval [−𝜏, 0] into 𝑅

𝑛 with the norm ‖𝜙‖
𝜏
=

sup
−𝜏⩽𝜃⩽0

‖𝜙(𝜃)‖, where ‖ ⋅ ‖ is the Euclidean norm.
In this paper, we consider a complex delayed dynamical

network consisting of 𝑁 identical nodes with diffusive and
output coupling. The mathematical model of the coupled
network can be described as follows:

�̇�
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡)) +

𝑎

𝑘
𝛽
𝜔

𝑖

𝑁

∑

𝑗=1

𝐿
𝑖𝑗
Γ𝑦
𝑗
(𝑡 − 𝜏 (𝑡)) + 𝐵

𝑖
𝑢
𝑖
(𝑡) ,

𝑦
𝑖
(𝑡) = 𝐶

𝑖
𝑥
𝑖
(𝑡) + 𝐷

𝑖
𝑢
𝑖
(𝑡) ,

(1)

where 𝑖 = 1, 2, . . . , 𝑁. 𝜏(𝑡) is the time-varying delay with 0 ⩽
𝜏(𝑡) ⩽ 𝜏.

The function 𝑓(⋅), describing the local dynamics of the
nodes, is continuously differentiable and capable of produc-
ing various rich dynamical behaviors, 𝑥

𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥
𝑖2
(𝑡),

. . . , 𝑥
𝑖𝑛
(𝑡))
𝑇

∈ 𝑅
𝑛 is the state variable of node 𝑖, 𝑦

𝑖
(𝑡) ∈ 𝑅

𝑛 is
the output of node 𝑖,𝑢

𝑖
(𝑡) ∈ 𝑅

𝑛 is the input vector of node 𝑖,𝐵
𝑖
,

𝐶
𝑖
, and𝐷

𝑖
are known matrices with appropriate dimensions,

Γ ∈ 𝑅
𝑛×𝑛 is inner-coupling matrix, which describes the

individual coupling between two connected nodes of the
network, 𝑎 > 0 represents the overall coupling strength, 𝑘

𝑖
is

the degree of node 𝑖,𝛽
𝜔
is a tunable weight parameter, and the

real matrix 𝐿 = (𝐿
𝑖𝑗
)
𝑁×𝑁

is a symmetric matrix with diagonal
entries 𝐿

𝑖𝑖
= −𝑘
𝑖
and off-diagonal entries 𝐿

𝑖𝑗
= 1 if node 𝑖 and

node 𝑗 are connected by a link, and 𝐿
𝑖𝑗
= 0 otherwise.

In this paper, we always assume that complex network (1)
is connected. Let 𝑥(𝑡) = (𝑥

𝑇

1
(𝑡), 𝑥
𝑇

2
(𝑡), . . . , 𝑥

𝑇

𝑁
(𝑡))
𝑇, 𝑦(𝑡) =

(𝑦
𝑇

1
(𝑡), 𝑦
𝑇

2
(𝑡), . . . , 𝑦

𝑇

𝑁
(𝑡))
𝑇, and 𝑢(𝑡) = (𝑢

𝑇

1
(𝑡), 𝑢
𝑇

2
(𝑡), ⋅ ⋅ ⋅ ,

𝑢
𝑇

𝑁
(𝑡))
𝑇. The initial condition associated with the complex

network (1) is given in the form

𝑥 (0) = 𝑥
0
, 𝑥
0
= (𝑥
𝑇

10
, 𝑥
𝑇

20
, . . . , 𝑥

𝑇

𝑁0
)
𝑇

, 𝑥
𝑖0
∈ 𝑅
𝑛

,

𝑦 (𝑠) = Φ (𝑠) , 𝑠 ∈ [−𝜏, 0] , 𝜙
𝑖
∈ 𝐶 ([−𝜏, 0] , 𝑅

𝑛

) ,

Φ (𝑠) = (𝜙
𝑇

1
(𝑠) , 𝜙
𝑇

2
(𝑠) , . . . , 𝜙

𝑇

𝑁
(𝑠))
𝑇

, 𝑖 = 1, 2, . . . , 𝑁.

(2)

Next, we give several useful definitions.

Definition 1 (see [32]). Complex network (1) is called input
passive if there exist two constants 𝛾 > 0 and 𝛽 ∈ 𝑅 such that

2∫

𝑡
𝑝

0

𝑦
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠 ⩾ −𝛽
2

+ 𝛾∫

𝑡
𝑝

0

𝑢
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠, (3)

for all 𝑡
𝑝
⩾ 0.

Definition 2 (see [32]). Complex network (1) is called output
passive if there exist two constants 𝛾 > 0 and 𝛽 ∈ 𝑅 such that

2∫

𝑡
𝑝

0

𝑦
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠 ⩾ −𝛽
2

+ 𝛾∫

𝑡
𝑝

0

𝑦
𝑇

(𝑠) 𝑦 (𝑠) 𝑑𝑠, (4)

for all 𝑡
𝑝
⩾ 0.

Definition 3 (see [34]). Let 𝐴 = (𝑎
𝑖𝑗
)
𝑚×𝑛

∈ 𝑅
𝑚×𝑛, and let

𝐵 = (𝑏
𝑖𝑗
)
𝑝×𝑞

∈ 𝑅
𝑝×𝑞. Then the Kronecker product (or tensor

product) of 𝐴 and 𝐵 is defined as the matrix

𝐴 ⊗ 𝐵 =

[
[
[
[

[

𝑎
11
𝐵 𝑎
12
𝐵 ⋅ ⋅ ⋅ 𝑎

1𝑛
𝐵

𝑎
21
𝐵 𝑎
22
𝐵 ⋅ ⋅ ⋅ 𝑎

2𝑛
𝐵

.

.

.
.
.
. ⋅ ⋅ ⋅

.

.

.

𝑎
𝑚1
𝐵 𝑎
𝑚2
𝐵 ⋅ ⋅ ⋅ 𝑎

𝑚𝑛
𝐵

]
]
]
]

]

∈ 𝑅
𝑚𝑝×𝑛𝑞

. (5)
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The Kronecker product has the following properties:

(1) (𝐴 ⊗ 𝐵)
𝑇

= 𝐴
𝑇

⊗ 𝐵
𝑇

;

(2) (𝛼𝐴) ⊗ 𝐵 = 𝐴 ⊗ (𝛼𝐵) ;

(3) (𝐴 + 𝐵) ⊗ 𝐶 = 𝐴 ⊗ 𝐶 + 𝐵 ⊗ 𝐶;

(4) (𝐴 ⊗ 𝐵) (𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷) ,

(6)

where 𝛼 ∈ 𝑅,𝐶, and𝐷 are matrices with suitable dimensions.

3. Main Results

In this section, we shall investigate the input passivity and
output passivity of the complex delayed dynamical networks
with output coupling.

In [32, 35], authorsmake the assumption that the function
𝑓(⋅) is in the QUAD function class. In this paper, we make
similar assumptions.

(A1) There exist a positive definite diagonal matrix
𝑃 = diag(𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
) and a diagonal matrix Δ =

diag(𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑛
) such that𝑓 satisfies the following inequal-

ity:

𝑥
𝑇

𝑃 (𝑓 (𝑥) − Δ𝑥) ⩽ −𝜂𝑥
𝑇

𝑥, (7)

for some 𝜂 > 0 and all 𝑥 ∈ 𝑅
𝑛.

For the convenience, we denote

�̂� = diag (𝑃, 𝑃, . . . , 𝑃) , Δ̂ = diag (Δ, Δ, . . . , Δ) ,

𝐵 = diag (𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑁
) , 𝐶 = diag (𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑁
) ,

𝐷 = diag (𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑁
) .

(8)

In the following, we first give two input passivity criteria.

Theorem 4. Let (A1) hold, and let ̇𝜏(𝑡) ⩽ 𝜎 < 1. The complex
network (1) is input passive if there exist matrix 𝑄 ⩾ 0 and a
scalar 𝛾 > 0 such that

(

𝑊
1

𝑎�̂� (𝐺 ⊗ Γ) 𝑊
2

𝑎 (𝐺 ⊗ Γ)
𝑇

�̂� − (1 − 𝜎)𝑄 0

𝑊
𝑇

2
0 𝑊

3

) ⩽ 0, (9)

where

𝑊
1
= −2𝜂𝐼

𝑛𝑁
+ 2�̂�Δ̂ + 𝐶

𝑇

𝑄𝐶,

𝑊
2
= �̂�𝐵 + 𝐶

𝑇

𝑄𝐷 − 𝐶
𝑇

,

𝑊
3
= − (𝐷 + 𝐷

𝑇

− 𝛾𝐼
𝑛𝑁

− 𝐷
𝑇

𝑄𝐷) .

(10)

Proof. For convenient analysis, we let

𝐺
𝑖𝑗
=

𝐿
𝑖𝑗

𝑘
𝛽
𝜔

𝑖

. (11)

Then, complex network (1) can be rewritten as follows:

�̇�
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡)) + 𝑎

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
Γ𝑦
𝑗
(𝑡 − 𝜏 (𝑡)) + 𝐵

𝑖
𝑢
𝑖
(𝑡) ,

𝑦
𝑖
(𝑡) = 𝐶

𝑖
𝑥
𝑖
(𝑡) + 𝐷

𝑖
𝑢
𝑖
(𝑡) ,

(12)

where 𝑖 = 1, 2, . . . , 𝑁. 𝐺 = (𝐺
𝑖𝑗
)
𝑁×𝑁

is a coupling matrix,
accounting for the topology of complex dynamical network.
We can rewrite system (12) in a compact form as follows:

�̇� (𝑡) = 𝐹 (𝑥 (𝑡)) + 𝑎 (𝐺 ⊗ Γ) 𝑦 (𝑡 − 𝜏 (𝑡)) + 𝐵𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) ,

(13)

where

𝑥 (𝑡) = (𝑥
𝑇

1
(𝑡) , 𝑥
𝑇

2
(𝑡) , . . . , 𝑥

𝑇

𝑁
(𝑡))
𝑇

,

𝑢 (𝑡) = (𝑢
𝑇

1
(𝑡) , 𝑢
𝑇

2
(𝑡) , . . . , 𝑢

𝑇

𝑁
(𝑡))
𝑇

,

𝑦 (𝑡) = (𝑦
𝑇

1
(𝑡) , 𝑦
𝑇

2
(𝑡) , . . . , 𝑦

𝑇

𝑁
(𝑡))
𝑇

,

𝐹 (𝑥 (𝑡)) = (𝑓
𝑇

(𝑥
1
(𝑡)) , 𝑓

𝑇

(𝑥
2
(𝑡)) , . . . , 𝑓

𝑇

(𝑥
𝑁
(𝑡)))
𝑇

,

𝑦 (𝑡 − 𝜏 (𝑡))

= (𝑦
𝑇

1
(𝑡 − 𝜏 (𝑡)) , 𝑦

𝑇

2
(𝑡 − 𝜏 (𝑡)) , . . . , 𝑦

𝑇

𝑁
(𝑡 − 𝜏 (𝑡)))

𝑇

.

(14)

Construct Lyapunov functional for system (13) as follows:

𝑉 (𝑡) = 𝑥
𝑇

(𝑡) �̂�𝑥 (𝑡) + ∫

𝑡

𝑡−𝜏(𝑡)

𝑦
𝑇

(𝛼)𝑄𝑦 (𝛼) 𝑑𝛼. (15)

The derivative of 𝑉(𝑡) satisfies

�̇� (𝑡) = 2𝑥
𝑇

(𝑡) �̂��̇� (𝑡) + 𝑦
𝑇

(𝑡) 𝑄𝑦 (𝑡)

− (1 − ̇𝜏 (𝑡)) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑦 (𝑡 − 𝜏 (𝑡))

⩽ 2𝑥
𝑇

(𝑡) �̂��̇� (𝑡) + 𝑦
𝑇

(𝑡) 𝑄𝑦 (𝑡)

− (1 − 𝜎) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑦 (𝑡 − 𝜏 (𝑡))

= 2𝑥
𝑇

(𝑡) �̂�𝐹 (𝑥 (𝑡)) + 2𝑎𝑥
𝑇

(𝑡) �̂� (𝐺 ⊗ Γ) 𝑦 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) �̂�𝐵𝑢 (𝑡) + 𝑦
𝑇

(𝑡) 𝑄𝑦 (𝑡)

− (1 − 𝜎) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑦 (𝑡 − 𝜏 (𝑡)) .

(16)

Then, we can get

�̇� (𝑡) − 2𝑦
𝑇

(𝑡) 𝑢 (𝑡) + 𝛾𝑢
𝑇

(𝑡) 𝑢 (𝑡)

⩽ 2𝑥
𝑇

(𝑡) �̂�𝐹 (𝑥 (𝑡)) + 2𝑎𝑥
𝑇

(𝑡) �̂� (𝐺 ⊗ Γ) 𝑦 (𝑡 − 𝜏 (𝑡))
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+ 2𝑥
𝑇

(𝑡) �̂�𝐵𝑢 (𝑡) + 𝑦
𝑇

(𝑡) 𝑄𝑦 (𝑡)

− (1 − 𝜎) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑦 (𝑡 − 𝜏 (𝑡))

− 2𝑥
𝑇

(𝑡) 𝐶
𝑇

𝑢 (𝑡) − 𝑢
𝑇

(𝑡) (𝐷 + 𝐷
𝑇

− 𝛾𝐼
𝑛𝑁
) 𝑢 (𝑡) .

(17)

According to (A1), we can obtain

𝑥
𝑇

(𝑡) �̂�𝐹 (𝑥 (𝑡)) =

𝑁

∑

𝑖=1

𝑥
𝑇

𝑖
(𝑡) 𝑃𝑓 (𝑥

𝑖
(𝑡))

⩽

𝑁

∑

𝑖=1

[−𝜂𝑥
𝑇

𝑖
(𝑡) 𝑥
𝑖
(𝑡) + 𝑥

𝑇

𝑖
(𝑡) 𝑃Δ𝑥

𝑖
(𝑡)]

= 𝑥
𝑇

(𝑡) (−𝜂𝐼
𝑛𝑁

+ �̂�Δ̂) 𝑥 (𝑡) .

(18)

It follows from (9) and (18) that

�̇� (𝑡) − 2𝑦
𝑇

(𝑡) 𝑢 (𝑡) + 𝛾𝑢
𝑇

(𝑡) 𝑢 (𝑡)

⩽ 𝑥
𝑇

(𝑡) (−2𝜂𝐼
𝑛𝑁

+ 2�̂�Δ̂ + 𝐶
𝑇

𝑄𝐶)𝑥 (𝑡)

+ 2𝑎𝑥
𝑇

(𝑡) �̂� (𝐺 ⊗ Γ) 𝑦 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) (�̂�𝐵 + 𝐶
𝑇

𝑄𝐷 − 𝐶
𝑇

) 𝑢 (𝑡)

− (1 − 𝜎) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑦 (𝑡 − 𝜏 (𝑡))

− 𝑢
𝑇

(𝑡) (𝐷 + 𝐷
𝑇

− 𝛾𝐼
𝑛𝑁

− 𝐷
𝑇

𝑄𝐷)𝑢 (𝑡)

= 𝜉
𝑇

(𝑡)(

𝑊
1

𝑎�̂� (𝐺 ⊗ Γ) 𝑊
2

𝑎 (𝐺 ⊗ Γ)
𝑇

�̂� − (1 − 𝜎)𝑄 0

𝑊
𝑇

2
0 𝑊

3

)𝜉 (𝑡)

⩽ 0,

(19)

where 𝜉(𝑡) = (𝑥
𝑇

(𝑡), 𝑦
𝑇

(𝑡 − 𝜏(𝑡)), 𝑢
𝑇

(𝑡))
𝑇.

By integrating (19) with respect to 𝑡 over the time period
0 to 𝑡
𝑝
, we get

2∫

𝑡
𝑝

0

𝑦
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠

⩾ 𝑉 (𝑡
𝑝
) − 𝑉 (0) + 𝛾∫

𝑡
𝑝

0

𝑢
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠.

(20)

From the definition of 𝑉(𝑡), we have 𝑉(𝑡
𝑝
) ⩾ 0 and 𝑉(0) ⩾ 0.

Thus,

2∫

𝑡
𝑝

0

𝑦
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠 ⩾ −𝛽
2

+ 𝛾∫

𝑡
𝑝

0

𝑢
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠, (21)

for all 𝑡
𝑝
⩾ 0, 𝛽 = √𝑉(0). The proof is completed.

Theorem 5. Let (A1) hold, and let ̇𝜏(𝑡) ⩽ 𝜎 < 1. The complex
network (1) is input passive if there exist two matrices 𝑍 ⩾ 0

and 𝑄 ⩾ 0 and a scalar 𝛾 > 0 such that

(

𝑆
1

𝑎�̂� (𝐺 ⊗ Γ) 𝑆
2

𝑎 (𝐺 ⊗ Γ)
𝑇

�̂� − (1 − 𝜎)𝑄 0

𝑆
𝑇

2
0 𝑆

3

) ⩽ 0, (22)

where

𝑆
1
= −2𝜂𝐼

𝑛𝑁
+ 2�̂�Δ̂ + 𝐶

𝑇

(𝑄 + 𝜏𝑍)𝐶,

𝑆
2
= �̂�𝐵 − 𝐶

𝑇

+ 𝐶
𝑇

(𝑄 + 𝜏𝑍)𝐷,

𝑆
3
= − [𝐷 + 𝐷

𝑇

− 𝛾𝐼
𝑛𝑁

− 𝐷
𝑇

(𝑄 + 𝜏𝑍)𝐷] .

(23)

Proof. Define the following Lyapunov functional for system
(13):

𝑉 (𝑡) = 𝑥
𝑇

(𝑡) �̂�𝑥 (𝑡) + ∫

0

−𝜏(𝑡)

∫

𝑡

𝑡+𝛽

𝑦
𝑇

(𝛼) 𝑍𝑦 (𝛼) 𝑑𝛼 𝑑𝛽

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑦
𝑇

(𝛼)𝑄𝑦 (𝛼) 𝑑𝛼.

(24)

The derivative of 𝑉(𝑡) satisfies

�̇� (𝑡) = 2𝑥
𝑇

(𝑡) �̂��̇� (𝑡) + 𝑦
𝑇

(𝑡) 𝑄𝑦 (𝑡)

− ∫

𝑡

𝑡−𝜏(𝑡)

𝑦
𝑇

(𝛼) 𝑍𝑦 (𝛼) 𝑑𝛼 + 𝜏 (𝑡) 𝑦
𝑇

(𝑡) 𝑍𝑦 (𝑡)

+ ̇𝜏 (𝑡) ∫

𝑡

𝑡−𝜏(𝑡)

𝑦
𝑇

(𝛼) 𝑍𝑦 (𝛼) 𝑑𝛼

− (1 − ̇𝜏 (𝑡)) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑦 (𝑡 − 𝜏 (𝑡))

⩽ 2𝑥
𝑇

(𝑡) �̂��̇� (𝑡) + 𝑦
𝑇

(𝑡) (𝑄 + 𝜏𝑍) 𝑦 (𝑡)

− (1 − 𝜎) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑦 (𝑡 − 𝜏 (𝑡))

= 2𝑥
𝑇

(𝑡) �̂�𝐹 (𝑥 (𝑡)) + 2𝑎𝑥
𝑇

(𝑡) �̂� (𝐺 ⊗ Γ) 𝑦 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) �̂�𝐵𝑢 (𝑡) + 𝑦
𝑇

(𝑡) (𝑄 + 𝜏𝑍) 𝑦 (𝑡)

− (1 − 𝜎) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑦 (𝑡 − 𝜏 (𝑡)) .

(25)

Then, we can get

�̇� (𝑡) − 2𝑦
𝑇

(𝑡) 𝑢 (𝑡) + 𝛾𝑢
𝑇

(𝑡) 𝑢 (𝑡)

⩽ 2𝑥
𝑇

(𝑡) �̂�𝐹 (𝑥 (𝑡)) + 2𝑎𝑥
𝑇

(𝑡) �̂� (𝐺 ⊗ Γ) 𝑦 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) (�̂�𝐵 − 𝐶
𝑇

) 𝑢 (𝑡) + 𝑦
𝑇

(𝑡) (𝑄 + 𝜏𝑍) 𝑦 (𝑡)

− (1 − 𝜎) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑦 (𝑡 − 𝜏 (𝑡))

− 𝑢
𝑇

(𝑡) (𝐷 + 𝐷
𝑇

− 𝛾𝐼
𝑛𝑁
) 𝑢 (𝑡) .

(26)

It follows from (18) and (22) that

�̇� (𝑡) − 2𝑦
𝑇

(𝑡) 𝑢 (𝑡) + 𝛾𝑢
𝑇

(𝑡) 𝑢 (𝑡)

⩽ 𝑥
𝑇

(𝑡) [−2𝜂𝐼
𝑛𝑁

+ 2�̂�Δ̂ + 𝐶
𝑇

(𝑄 + 𝜏𝑍)𝐶] 𝑥 (𝑡)

+ 2𝑎𝑥
𝑇

(𝑡) �̂� (𝐺 ⊗ Γ) 𝑦 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) [�̂�𝐵 − 𝐶
𝑇

+ 𝐶
𝑇

(𝑄 + 𝜏𝑍)𝐷] 𝑢 (𝑡)
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− 𝑢
𝑇

(𝑡) [𝐷 + 𝐷
𝑇

− 𝛾𝐼
𝑛𝑁

− 𝐷
𝑇

(𝑄 + 𝜏𝑍)𝐷] 𝑢 (𝑡)

− (1 − 𝜎) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑦 (𝑡 − 𝜏 (𝑡))

= 𝜉
𝑇

(𝑡)(

𝑆
1

𝑎�̂� (𝐺 ⊗ Γ) 𝑆
2

𝑎 (𝐺 ⊗ Γ)
𝑇

�̂� − (1 − 𝜎)𝑄 0

𝑆
𝑇

2
0 𝑆

3

)𝜉 (𝑡)

⩽ 0,

(27)

where 𝜉(𝑡) = (𝑥
𝑇

(𝑡), 𝑦
𝑇

(𝑡 − 𝜏(𝑡)), 𝑢
𝑇

(𝑡))
𝑇.

By integrating (27) with respect to 𝑡 over the time period
0 to 𝑡
𝑝
, we can get

2∫

𝑡
𝑝

0

𝑦
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠

⩾ 𝑉 (𝑡
𝑝
) − 𝑉 (0) + 𝛾∫

𝑡
𝑝

0

𝑢
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠.

(28)

From the definition of 𝑉(𝑡), we have 𝑉(𝑡
𝑝
) ⩾ 0 and 𝑉(0) ⩾ 0.

Thus,

2∫

𝑡
𝑝

0

𝑦
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠 ⩾ −𝛽
2

+ 𝛾∫

𝑡
𝑝

0

𝑢
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠, (29)

for all 𝑡
𝑝
⩾ 0, 𝛽 = √𝑉(0). The proof is completed.

In the above, two sufficient conditions are given to ensure
the input passivity of complex network (1). In the following,
we shall discuss the output passivity of complex network (1).

Theorem 6. Let (A1) hold, and let ̇𝜏(𝑡) ⩽ 𝜎 < 1. The complex
network (1) is output passive if there exist matrix 𝑄 ⩾ 0 and
scalar 𝛾 > 0 such that

(

𝑀
1

𝑎�̂� (𝐺 ⊗ Γ) 𝑀
2

𝑎 (𝐺 ⊗ Γ)
𝑇

�̂� − (1 − 𝜎)𝑄 0

𝑀
𝑇

2
0 𝑀

3

) ⩽ 0, (30)

where

𝑀
1
= −2𝜂𝐼

𝑛𝑁
+ 2�̂�Δ̂ + 𝐶

𝑇

(𝑄 + 𝛾𝐼
𝑛𝑁
) 𝐶,

𝑀
2
= �̂�𝐵 + 𝐶

𝑇

(𝑄 + 𝛾𝐼
𝑛𝑁
)𝐷 − 𝐶

𝑇

,

𝑀
3
= − [𝐷 + 𝐷

𝑇

− 𝐷
𝑇

(𝑄 + 𝛾𝐼
𝑛𝑁
)𝐷] .

(31)

Proof. Construct the same Lyapunov functional as (15) for
system (13). Then, we can get

�̇� (𝑡) ⩽ 2𝑥
𝑇

(𝑡) �̂�𝐹 (𝑥 (𝑡)) + 2𝑎𝑥
𝑇

(𝑡) �̂� (𝐺 ⊗ Γ) 𝑦 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) �̂�𝐵𝑢 (𝑡) + 𝑦
𝑇

(𝑡) 𝑄𝑦 (𝑡)

− (1 − 𝜎) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑦 (𝑡 − 𝜏 (𝑡)) .

(32)

Therefore, we have

�̇� (𝑡) − 2𝑦
𝑇

(𝑡) 𝑢 (𝑡) + 𝛾𝑦
𝑇

(𝑡) 𝑦 (𝑡)

⩽ 2𝑥
𝑇

(𝑡) �̂�𝐹 (𝑥 (𝑡)) + 2𝑎𝑥
𝑇

(𝑡) �̂� (𝐺 ⊗ Γ) 𝑦 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) (�̂�𝐵 − 𝐶
𝑇

) 𝑢 (𝑡) + 𝑦
𝑇

(𝑡) (𝑄 + 𝛾𝐼
𝑛𝑁
) 𝑦 (𝑡)

− (1 − 𝜎) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑦 (𝑡 − 𝜏 (𝑡))

− 𝑢
𝑇

(𝑡) (𝐷 + 𝐷
𝑇

) 𝑢 (𝑡) .

(33)

It follows from (18) and (30) that

�̇� (𝑡) − 2𝑦
𝑇

(𝑡) 𝑢 (𝑡) + 𝛾𝑦
𝑇

(𝑡) 𝑦 (𝑡)

⩽ 𝑥
𝑇

(𝑡) [−2𝜂𝐼
𝑛𝑁

+ 2�̂�Δ̂ + 𝐶
𝑇

(𝑄 + 𝛾𝐼
𝑛𝑁
) 𝐶] 𝑥 (𝑡)

+ 2𝑎𝑥
𝑇

(𝑡) �̂� (𝐺 ⊗ Γ) 𝑦 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) [�̂�𝐵 + 𝐶
𝑇

(𝑄 + 𝛾𝐼
𝑛𝑁
)𝐷 − 𝐶

𝑇

] 𝑢 (𝑡)

− (1 − 𝜎) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑦 (𝑡 − 𝜏 (𝑡))

− 𝑢
𝑇

(𝑡) [𝐷 + 𝐷
𝑇

− 𝐷
𝑇

(𝑄 + 𝛾𝐼
𝑛𝑁
)𝐷] 𝑢 (𝑡)

= 𝜉
𝑇

(𝑡)(

𝑀
1

𝑎�̂� (𝐺 ⊗ Γ) 𝑀
2

𝑎 (𝐺 ⊗ Γ)
𝑇

�̂� − (1 − 𝜎)𝑄 0

𝑀
𝑇

2
0 𝑀

3

)𝜉 (𝑡)

⩽ 0,

(34)

where 𝜉(𝑡) = (𝑥
𝑇

(𝑡), 𝑦
𝑇

(𝑡 − 𝜏(𝑡)), 𝑢
𝑇

(𝑡))
𝑇.

By integrating (34) with respect to 𝑡 over the time period
0 to 𝑡
𝑝
, we get

2∫

𝑡
𝑝

0

𝑦
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠

⩾ 𝑉 (𝑡
𝑝
) − 𝑉 (0) + 𝛾∫

𝑡
𝑝

0

𝑦
𝑇

(𝑠) 𝑦 (𝑠) 𝑑𝑠.

(35)

From the definition of 𝑉(𝑡), we have 𝑉(𝑡
𝑝
) ⩾ 0 and 𝑉(0) ⩾ 0.

Thus,

2∫

𝑡
𝑝

0

𝑦
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠 ⩾ −𝛽
2

+ 𝛾∫

𝑡
𝑝

0

𝑦
𝑇

(𝑠) 𝑦 (𝑠) 𝑑𝑠, (36)

for all 𝑡
𝑝
⩾ 0, 𝛽 = √𝑉(0). The proof is completed.

Theorem 7. Let (A1) hold, and let ̇𝜏(𝑡) ⩽ 𝜎 < 1. The complex
network (1) is output passive if there exist two matrices 𝑍 ⩾ 0

and 𝑄 ⩾ 0 and a scalar 𝛾 > 0 such that

(

𝐻
1

𝑎�̂� (𝐺 ⊗ Γ) 𝐻
2

𝑎 (𝐺 ⊗ Γ)
𝑇

�̂� − (1 − 𝜎)𝑄 0

𝐻
𝑇

2
0 𝐻

3

) ⩽ 0, (37)
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where

𝐻
1
= −2𝜂𝐼

𝑛𝑁
+ 2�̂�Δ̂ + 𝐶

𝑇

(𝑄 + 𝜏𝑍 + 𝛾𝐼
𝑛𝑁
) 𝐶,

𝐻
2
= �̂�𝐵 − 𝐶

𝑇

+ 𝐶
𝑇

(𝑄 + 𝜏𝑍 + 𝛾𝐼
𝑛𝑁
)𝐷,

𝐻
3
= − [𝐷 + 𝐷

𝑇

− 𝐷
𝑇

(𝑄 + 𝜏𝑍 + 𝛾𝐼
𝑛𝑁
)𝐷] .

(38)

Proof. Construct the same Lyapunov functional as (24) for
system (13). Then, we can obtain

�̇� (𝑡) ⩽ 2𝑥
𝑇

(𝑡) �̂�𝐹 (𝑥 (𝑡)) + 2𝑎𝑥
𝑇

(𝑡) �̂� (𝐺 ⊗ Γ) 𝑦 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) �̂�𝐵𝑢 (𝑡) + 𝑦
𝑇

(𝑡) (𝑄 + 𝜏𝑍) 𝑦 (𝑡)

− (1 − 𝜎) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑦 (𝑡 − 𝜏 (𝑡)) .

(39)

Therefore, we have

�̇� (𝑡) − 2𝑦
𝑇

(𝑡) 𝑢 (𝑡) + 𝛾𝑦
𝑇

(𝑡) 𝑦 (𝑡)

⩽ 2𝑥
𝑇

(𝑡) �̂�𝐹 (𝑥 (𝑡)) + 2𝑎𝑥
𝑇

(𝑡) �̂� (𝐺 ⊗ Γ) 𝑦 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) (�̂�𝐵−𝐶
𝑇

) 𝑢 (𝑡)+𝑦
𝑇

(𝑡) (𝑄+𝜏𝑍+𝛾𝐼
𝑛𝑁
) 𝑦 (𝑡)

− (1 − 𝜎) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑦 (𝑡 − 𝜏 (𝑡))

− 𝑢
𝑇

(𝑡) (𝐷 + 𝐷
𝑇

) 𝑢 (𝑡) .

(40)

It follows from (18) and (37) that

�̇� (𝑡) − 2𝑦
𝑇

(𝑡) 𝑢 (𝑡) + 𝛾𝑦
𝑇

(𝑡) 𝑦 (𝑡)

⩽ 𝑥
𝑇

(𝑡) [−2𝜂𝐼
𝑛𝑁

+ 2�̂�Δ̂ + 𝐶
𝑇

(𝑄 + 𝜏𝑍 + 𝛾𝐼
𝑛𝑁
) 𝐶] 𝑥 (𝑡)

+ 2𝑎𝑥
𝑇

(𝑡) �̂� (𝐺 ⊗ Γ) 𝑦 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) [�̂�𝐵 − 𝐶
𝑇

+ 𝐶
𝑇

(𝑄 + 𝜏𝑍 + 𝛾𝐼
𝑛𝑁
)𝐷] 𝑢 (𝑡)

− (1 − 𝜎) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑦 (𝑡 − 𝜏 (𝑡))

− 𝑢
𝑇

(𝑡) [𝐷 + 𝐷
𝑇

− 𝐷
𝑇

(𝑄 + 𝜏𝑍 + 𝛾𝐼
𝑛𝑁
)𝐷] 𝑢 (𝑡)

= 𝜉
𝑇

(𝑡)(

𝐻
1

𝑎�̂� (𝐺 ⊗ Γ) 𝐻
2

𝑎 (𝐺 ⊗ Γ)
𝑇

�̂� − (1 − 𝜎)𝑄 0

𝐻
𝑇

2
0 𝐻

3

)𝜉 (𝑡)

⩽ 0,

(41)

where 𝜉(𝑡) = (𝑥
𝑇

(𝑡), 𝑦
𝑇

(𝑡 − 𝜏(𝑡)), 𝑢
𝑇

(𝑡))
𝑇.

By integrating (41) with respect to 𝑡 over the time period
0 to 𝑡
𝑝
, we get

2∫

𝑡
𝑝

0

𝑦
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠

⩾ 𝑉 (𝑡
𝑝
) − 𝑉 (0) + 𝛾∫

𝑡
𝑝

0

𝑦
𝑇

(𝑠) 𝑦 (𝑠) 𝑑𝑠.

(42)

From the definition of 𝑉(𝑡), we have 𝑉(𝑡
𝑝
) ⩾ 0 and 𝑉(0) ⩾ 0.

Thus,

2∫

𝑡
𝑝

0

𝑦
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠 ⩾ −𝛽
2

+ 𝛾∫

𝑡
𝑝

0

𝑦
𝑇

(𝑠) 𝑦 (𝑠) 𝑑𝑠, (43)

for all 𝑡
𝑝
⩾ 0, 𝛽 = √𝑉(0). The proof is completed.

Remark 8. In recent years, some researchers have studied the
input passivity and output passivity of the complex networks
with state coupling, and many interesting results have been
derived. To the best of our knowledge, this is the first paper
to investigate the input passivity and output passivity of
complex delayed dynamical networks with output coupling.
By constructing new Lyapunov functionals, some sufficient
conditions ensuring the input passivity and output passivity
are established in this paper.

4. Examples

In this section, two illustrative examples are provided to verify
the effectiveness of the proposed theoretical results.

Example 1. Consider a three-order dynamical system as
the dynamical node of the complex network (1) which is
described by

(

�̇�
1

�̇�
2

�̇�
3

) = (

−10𝑥
1
+ 2𝑥
2

2𝑥
1
− 10𝑥

2
− 𝑥
1
𝑥
3

𝑥
1
𝑥
2
− 6𝑥
3

) . (44)

Clearly, we can take 𝜂 = 6, 𝑃 = diag(1, 1, 1), and Δ =

diag(0, 0, 0). Take

Γ = (

0.4 0.2 0.2

0.3 0.2 0.3

0.3 0.1 0.2

) , 𝐶
𝑖
= (

0.3 0.2 0.1

0.4 0.1 0.5

0.4 0.3 0.2

) ,

𝐵
𝑖
= (

0.3 0.1 0.1

0.4 0.1 0.3

0.7 0 0.2

) , 𝐷
𝑖
= (

2.5 0 0

0 3.6 0

0 0 2.6

) ,

(45)

𝑎 = 0.2, 𝛽
𝜔
= 1, and 𝑖 = 1, 2, . . . , 10. The matrix 𝐿 is chosen

as follows:

(
(
(
(
(
(
(
(

(

−3 1 1 0 0 0 0 0 0 1

1 −4 1 0 1 0 1 0 0 0

1 1 −5 1 0 1 0 0 0 1

0 0 1 −3 1 0 0 0 1 0

0 1 0 1 −3 1 0 0 0 0

0 0 1 0 1 −3 1 0 0 0

0 1 0 0 0 1 −4 1 0 1

0 0 0 0 0 0 1 −2 1 0

0 0 0 1 0 0 0 1 −2 0

1 0 1 0 0 0 1 0 0 −3

)
)
)
)
)
)
)
)

)

. (46)
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Obviously, network (1) is connected, and matrix 𝐺 is

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

−1
1

3

1

3
0 0 0 0 0 0

1

3
1

4
−1

1

4
0

1

4
0

1

4
0 0 0

1

5

1

5
−1

1

5
0

1

5
0 0 0

1

5

0 0
1

3
−1

1

3
0 0 0

1

3
0

0
1

3
0

1

3
−1

1

3
0 0 0 0

0 0
1

3
0

1

3
−1

1

3
0 0 0

0
1

4
0 0 0

1

4
−1

1

4
0

1

4

0 0 0 0 0 0
1

2
−1

1

2
0

0 0 0
1

2
0 0 0

1

2
−1 0

1

3
0

1

3
0 0 0

1

3
0 0 −1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

. (47)

Next, we analyze the input passivity of complex network
(1).

Setting 𝜏(𝑡) = 0.5 − 0.5𝑒
−𝑡, then 0 ⩽ 𝜏(𝑡) ⩽ 𝜏 = 0.5 and

̇𝜏(𝑡) = 0.5𝑒
−𝑡

⩽ 0.5, for 𝑡 ⩾ 0.
We can find the followingmatrix𝑄 satisfying (9) with 𝛾 =

0.2. Consider the following:

𝑄 = diag (0.5341, 0.4135, 0.3429, 0.5341, 0.4135, 0.3429,

0.5341, 0.4135, 0.3429, 0.5341, 0.4135, 0.3429,

0.5341, 0.4135, 0.3429, 0.5341, 0.4135, 0.3429,

0.5341, 0.4135, 0.3429, 0.5341, 0.4135, 0.3429,

0.5341, 0.4135, 0.3429, 0.5341, 0.4135, 0.3429) .

(48)

Hence, it follows from Theorem 4 that complex network (1)
with above given parameters is input passive.

Example 2. Consider a three-order dynamical system as
the dynamical node of the complex network (1) which is
described by

(

�̇�
1

�̇�
2

�̇�
3

) = (

−9𝑥
1
+ 2𝑥
2

𝑥
1
− 9𝑥
2
− 𝑥
1
𝑥
3

𝑥
1
𝑥
2
− 7𝑥
3

) . (49)

Clearly, we can take 𝜂 = 7, 𝑃 = diag(1, 1, 1), and Δ =

diag(0, 0, 0). Take

Γ = (

0.1 0.4 0.6

0.3 0.4 0.1

0.3 0.5 0.2

) , 𝐶
𝑖
= (

0.6 0.3 0.4

0.2 0.1 0.3

0.1 0.3 0.7

) ,

𝐵
𝑖
= (

0.1 0.5 0.3

0.5 0.3 0.1

0.2 0.7 0.2

) , 𝐷
𝑖
= (

2.9 0 0

0 3.3 0

0 0 2.8

) ,

(50)

𝑎 = 0.3, 𝛽
𝜔
= 1, and 𝑖 = 1, 2, . . . , 10. The matrix 𝐿 is chosen

as follows:

(
(
(
(
(
(
(
(

(

−2 0 0 0 0 0 0 0 1 1

0 −1 1 0 0 0 0 0 0 0

0 1 −2 0 0 0 0 0 0 1

0 0 0 −1 0 0 0 0 0 1

0 0 0 0 −1 0 0 0 0 1

0 0 0 0 0 −1 0 0 1 0

0 0 0 0 0 0 −1 1 0 0

0 0 0 0 0 0 1 −2 1 0

1 0 0 0 0 1 0 1 −4 1

1 0 1 1 1 0 0 0 1 −5

)
)
)
)
)
)
)
)

)

. (51)

Obviously, network (1) is connected, and matrix 𝐺 is

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

−1 0 0 0 0 0 0 0
1

2

1

2

0 −1 1 0 0 0 0 0 0 0

0
1

2
−1 0 0 0 0 0 0

1

2

0 0 0 −1 0 0 0 0 0 1

0 0 0 0 −1 0 0 0 0 1

0 0 0 0 0 −1 0 0 1 0

0 0 0 0 0 0 −1 1 0 0

0 0 0 0 0 0
1

2
−1

1

2
0

1

4
0 0 0 0

1

4
0

1

4
−1

1

4

1

5
0

1

5

1

5

1

5
0 0 0

1

5
−1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

. (52)

In the following, we analyze the output passivity of
complex network (1).

Setting 𝜏(𝑡) = 0.5 − 0.5𝑒
−𝑡, then 0 ⩽ 𝜏(𝑡) ⩽ 𝜏 = 0.5 and

̇𝜏(𝑡) = 0.5𝑒
−𝑡

⩽ 0.5, for 𝑡 ⩾ 0.
We can find the following matrix 𝑄 satisfying (30) with

𝛾 = 0.1. Consider the following:

𝑄 = diag (0.3548, 0.3893, 0.1592, 0.3548, 0.3893, 0.1592,

0.3548, 0.3893, 0.1592, 0.3548, 0.3893, 0.1592,

0.3548, 0.3893, 0.1592, 0.3548, 0.3893, 0.1592,

0.3548, 0.3893, 0.1592, 0.3548, 0.3893, 0.1592,

0.3548, 0.3893, 0.1592, 0.3548, 0.3893, 0.1592) .

(53)

ByTheorem 6, we know that complex network (1) with above
given parameters is output passive.

5. Conclusion

A new complex delayed dynamical network model with
output coupling has been introduced. We have considered
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the input passivity and output passivity of the proposed
network model. Some input passivity and output passivity
criteria have been established by constructing new Lyapunov
functionals. Moreover, two illustrative examples have been
provided to verify the correctness and effectiveness of the
obtained results. In future work, we shall study the input
passivity and output passivity of impulsive complex delayed
dynamical networks with output coupling.
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