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Topology detection for output-coupling weighted complex dynamical networks with two types of time delays is investigated in
this paper. Different from existing literatures, coupling delay and transmission delay are simultaneously taken into account in the
output-coupling network. Based on the idea of the state observer, we build the drive-response system and apply LaSalle’s invariance
principle to the error dynamical systemof the drive-response system. Several convergent criteria are deduced in the formof algebraic
inequalities. Some numerical simulations for the complex dynamical network, with node dynamics being chaotic, are given to verify
the effectiveness of the proposed scheme.

1. Introduction

Complex networks have various existence [1, 2] ranging from
the World-Wide Web to neural networks, from cell phone
webs to social networks [3], from food webs to metabolic
networks [4], and so on [5, 6]. Since the small-world [7] and
scale-free [8] network models were proposed, researches on
the complex network have entered a new stage. Abundant
research achievements have been concentrated on many
perspectives like exploration on the dynamics [9, 10] and
complexity [11] of the complex network, synchronization
criteria [12, 13] and control strategies [14–16] in complex
networks, estimation of uncertain state variables in con-
tinuous [17–19] or discrete [20] time domain under the
fixed topology, and so on. In practical circumstances, the
topological structure of a complex network is barely known
exactly due to the weak cognition to the network complexity.
If a serious malfunction occurs in a large-scale network,
it is primary to quickly identify the fault location before
trouble removal. Therefore, topology detection of complex
dynamical networks [21–29] has become a significant topic
for further studies. It is functionally powerful to employ the
adaptive feedback control strategy to the structure detection
of complex networks [21, 22, 24–28]. The target topology
matrix which Zhou and Lu [21] considered was not needed
to be symmetric, irreducible, or diffusive. If nodes in their

network had different dynamics, the detection could still
be accomplished. Additionally, stochastic perturbations [22]
were considered in the structure identification of complex
networks. In [23], based on the generalized outer synchro-
nization, the topological structure of the complex network
was recovered by constructing the auxiliary response network
which had simpler node dynamics.

Recently, the coupling delay has been taken into account
for the more realistic topology detection [24–27] since it
is ubiquitous in the interactions of network nodes. Some-
times it leads to additional complex dynamics [24]. In
[24], the topology of the complex network with coupling
delays was successfully identified by an adaptive feedback
controller. Their approach was applied to complex networks
with not only identical nodes but also different nodes.
The inner coupling matrix in [24] was chosen as a linear
one. The topology detection problem for weighted time-
varying dynamical networks with nonlinear inner coupling
was addressed in [25]. Besides the topology detection,
the estimation for uncertain system parameters [26] was
conducted in general complex delayed dynamical networks
[27]. It provides positive possibility for future applications.
However, in [21–27], information signals were assumed to
be transmitted as instant communication between the drive
and response systems, which is not practical enough. Due to
long communication distance and unexpected transmission
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congestions, it definitely takes finite time for exchanging
messages through the channel and the time delay should not
be ignored. In addition, the inevitable transmission delay
in reality is always hard to determine. Based on the state-
coupling network model, the unknown network structure
was obtained by achieving the lag synchronization between
drive and response systems [28]. In their scheme, all states of
nodes were transmitted for the synchronization of full state-
coupling complex networks.

The output-coupling network [14] whose every two nodes
connect to each other via just a scalar signal saves interior
communication resource, which has received more attention
recently. The transmission signals between the drive and
response output-coupling networks are also scalar outputs
instead of state vectors. It further reduces the capacity of
communication channels and becomesmore available for real
engineering. Fan et al. [29] detected the structures for state-
coupling and output-coupling complex networks, respective-
ly. Numerical examples verified their scheme effective apply-
ing to different kinds of networks without any time delay.

Motivated by the above discussions, study on the topol-
ogy detection of output-coupling complex networks with
both coupling and transmission delays is increasingly closer
to the reality and has very important research significance.
In this paper, based on the output-coupling network model,
we investigate the topology detection problem considering
coupling and transmission delays at the same time. The
transmission delay does not need to be known exactly, which
makes our scheme applicable for a more general case. The
target network serves as the drive system and a response
system is built accordingly whose node dynamics is the same
as the drive system. The topology of the target network
can be directed and weighted. Applying LaSalle’s invariance
principle [24, 25, 30], the error dynamical system is stabilized
to approaching zero asymptotically while the structure detec-
tion is completed and topology changes are tracked in time.

The rest parts of this paper are organized as follows. The
output-coupling complex network model with the coupling
delay is described in Section 2. Topology detection of a
general output-coupling complex network with coupling and
transmission delay is discussed in detail and some convergent
criteria are given in the form of algebraic inequalities in
Section 3. In Section 4, several convincing simulation results
are shown to confirm the accuracy and correctness of
our proposed strategy. Some conclusions are provided in
Section 5.

2. Preliminaries

Consider the output-coupling complex dynamical network
with coupling delays composed of 𝑁 identical nodes, which
is described by

�̇�𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 𝑁∑
𝑗=1

𝑐𝑖𝑗 (𝑡) 𝐿𝑦𝑗 (𝑡 − 𝜏1) ,
𝑦𝑖 (𝑡) = 𝐻𝑥𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥𝑖(𝑡) = [𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡), . . . , 𝑥𝑖𝑛(𝑡)]𝑇 ∈ 𝑅𝑛 is the state
vector of the 𝑖th node and 𝑦𝑖 ∈ 𝑅 is the output scalar of

that. 𝑓 : 𝑅 × 𝑅𝑛 → 𝑅𝑛 is a smooth nonlinear vector field.𝐻 ∈ 𝑅1×𝑛 is the output matrix of each node. In this way, 𝑦𝑖
is a linear combination of the 𝑖th node’s state components,
and 𝐿 ∈ 𝑅𝑛×1 is the inner coupling matrix. 𝜏1 is the inner
coupling delay in the complex network. For simplicity, we
assume that coupling delays of all nodes are the same constant
value in this paper.𝐶(𝑡) = (𝑐𝑖𝑗(𝑡))𝑁×𝑁 ∈ 𝑅𝑁×𝑁 is the uncertain
configuration matrix which represents the coupling strength
and topological structure of the complex network. If there
exists a connection from node 𝑖 to node 𝑗 (𝑖 ̸= 𝑗), then 𝑐𝑖𝑗(𝑡) ̸=0; otherwise 𝑐𝑖𝑗(𝑡) = 0. Assume that the diagonal elements{𝑐𝑖𝑖(𝑡) | 𝑖 = 1, 2, . . . , 𝑁} of 𝐶(𝑡) satisfy 𝑐𝑖𝑖(𝑡) = −∑𝑁𝑗=1,𝑗 ̸=𝑖 𝑐𝑖𝑗(𝑡).
Here, the configuration matrix 𝐶(𝑡) is not required to be
irreducible, symmetric, or diffusive.

Remark 1. 𝐶(𝑡) could switch anytime, which is used to
describe the unexpected changes ormanual operations on the
network topological structure. It is assumed that the switch-
ing of 𝐶(𝑡) is relatively slow. Otherwise, the identification
will be difficult to achieve in time, because the topology
estimators need some time to react to the swift change of the
topology.

Two assumptions and one lemma are introduced in the
following.

Assumption 2 (A2). Suppose that there exists a nonnegative
constant 𝛼 satisfying󵄩󵄩󵄩󵄩𝑓 (𝑥 (𝑡)) − 𝑓 (𝑦 (𝑡))󵄩󵄩󵄩󵄩 ≤ 𝛼 󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)󵄩󵄩󵄩󵄩 , (2)

which holds for any vectors 𝑥(𝑡), 𝑦(𝑡) ∈ 𝑅𝑛, where ‖ ⋅ ‖
represents the Euclidean normal.

Assumption 3 (A3). Suppose that, for any given 𝑖, 𝑗 ∈ {1, 2,. . . , 𝑁}, {𝐿𝑦𝑗(𝑡 − 𝜏1)}𝑁𝑗=1 is linearly independent of the orbit{𝑦𝑖(𝑡 − 𝜏1)}𝑁𝑖=1 of the synchronization manifold [31, 32].

Lemma 4 (L4). For any vectors 𝑥(𝑡), 𝑦(𝑡) ∈ 𝑅𝑛, the inequality2𝑥𝑇𝑦 ≤ 𝑥𝑇𝑥 + 𝑦𝑇𝑦 holds for any 𝑡.
Remark 5. (A2) is easy to satisfy for a large class of non-
linear systems, which means the nonlinear function 𝑓(𝑥)
is Lipschitz-continuous. It characterizes the property of the
node dynamics. In [31–33], all the coupling termsmust be lin-
early independent of the synchronization manifold between
the drive and response systems. (A3) is a necessary condition
for the purpose of detecting the network topology. Also, the
coupling delay 𝜏1 helps to prevent the synchronization of
the drive and response systems before topology detection is
completed.The transmission delay 𝜏2 will be explained in the
next section because it is generated by transmitting output
signals between the drive and response systems.

3. Topology Detection for
the Complex Dynamical Network with
the Transmission Delay

In order to identify unknown coupling strengths, namely, the
complex network’s topology, we establish a drive-response
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system. We consider the network model (1) as the drive
system, and the response system could be constructed as

̇̂𝑥𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 𝑁∑
𝑗=1

𝑐𝑖𝑗 (𝑡) 𝐿𝑦𝑗 (𝑡 − 𝜏1)
− 𝑘𝑖 (𝑦𝑖 (𝑡) − 𝑦𝑖 (𝑡 − 𝜏2)) ,

𝑦𝑖 (𝑡) = 𝐻𝑥𝑖 (𝑡) ,
(3)

where 𝑖 = 1, 2, . . . , 𝑁, 𝑥𝑖(𝑡) = [𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡), . . . , 𝑥𝑖𝑛(𝑡)]𝑇 ∈ 𝑅𝑛
is the state vector of the 𝑖th node, 𝑦𝑖 ∈ 𝑅 is the output scalar
of that in the response system, 𝑘𝑖 ∈ [𝑘𝑖1, 𝑘𝑖2, . . . , 𝑘𝑖𝑛]𝑇 is the𝑖th node’s observer gain which needs to be obtained, and 𝜏2
is the transmission time delay which is the time spent in the
communication channel. Here, the transmission delay 𝜏2 is
assumed to be an arbitrary constant value.

Let 𝑒𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑥𝑖(𝑡 − 𝜏2), 𝑒𝑦𝑖(𝑡) = 𝑦𝑖(𝑡) − 𝑦𝑖(𝑡 − 𝜏2),
and 𝑐𝑖𝑗(𝑡) = 𝑐𝑖𝑗(𝑡)−𝑐𝑖𝑗(𝑡−𝜏2); then the error dynamical system
(4) could be derived from the drive system (1) and response
system (3):

̇𝑒𝑖 (𝑡) = ̇̂𝑥𝑖 (𝑡) − �̇�𝑖 (𝑡 − 𝜏2)
= 𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑥𝑖 (𝑡 − 𝜏2))
+ 𝑁∑
𝑗=1

𝑐𝑖𝑗 (𝑡) 𝐿𝑦𝑗 (𝑡 − 𝜏1)

− 𝑁∑
𝑗=1

𝑐𝑖𝑗 (𝑡 − 𝜏2) 𝐿𝑦𝑗 (𝑡 − 𝜏1 − 𝜏2)
− 𝑘𝑖 (𝑦𝑖 (𝑡) − 𝑦𝑖 (𝑡 − 𝜏2))

= 𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑥𝑖 (𝑡 − 𝜏2))
+ 𝑁∑
𝑗=1

𝑐𝑖𝑗 (𝑡) 𝐿𝑦𝑗 (𝑡 − 𝜏1)

− 𝑁∑
𝑗=1

𝑐𝑖𝑗 (𝑡 − 𝜏2) 𝐿𝑦𝑗 (𝑡 − 𝜏1)

+ 𝑁∑
𝑗=1

𝑐𝑖𝑗 (𝑡 − 𝜏2) 𝐿𝑦𝑗 (𝑡 − 𝜏1)

− 𝑁∑
𝑗=1

𝑐𝑖𝑗 (𝑡 − 𝜏2) 𝐿𝑦𝑗 (𝑡 − 𝜏1 − 𝜏2) − 𝑘𝑖𝑒𝑦𝑖 (𝑡)
= 𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑥𝑖 (𝑡 − 𝜏2))
+ 𝑁∑
𝑗=1

𝑐𝑖𝑗 (𝑡) 𝐿𝑦𝑗 (𝑡 − 𝜏1)

+ 𝑁∑
𝑗=1

𝑐𝑖𝑗 (𝑡 − 𝜏2) 𝐿𝑒𝑦𝑗 (𝑡 − 𝜏1) − 𝑘𝑖𝑒𝑦𝑖 (𝑡) .

(4)

From (4), the output error dynamical system is obtained:

̇𝑒𝑦𝑖 (𝑡) = 𝐻 ̇𝑒𝑖 (𝑡)
= 𝐻 (𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑥𝑖 (𝑡 − 𝜏2)))
+ 𝐻( 𝑁∑

𝑗=1

𝑐𝑖𝑗 (𝑡) 𝐿𝑦𝑗 (𝑡 − 𝜏1))

+ 𝐻( 𝑁∑
𝑗=1

𝑐𝑖𝑗 (𝑡 − 𝜏2) 𝐿𝑒𝑦𝑗 (𝑡 − 𝜏1))
− 𝐻𝑘𝑖𝑒𝑦𝑖 (𝑡) .

(5)

Theorem 6. Suppose that (A2) and (A3) hold. Use the follow-
ing control law:

̇̂𝑐𝑖𝑗 (𝑡) = −𝑒𝑇𝑦𝑖 (𝑡)𝐻𝐿𝑦𝑗 (𝑡 − 𝜏1) . (6)

If there exist matrices 𝑘𝑖 (𝑖 = 1, 2, . . . , 𝑁) satisfying the
inequality

(𝛼 + 𝜆max (12𝑃 (𝑡 − 𝜏2) 𝑃𝑇 (𝑡 − 𝜏2)) + 12
−min (𝐻𝑘𝑖)) < 0,

(7)

where 𝜆max((1/2)𝑃(𝑡 − 𝜏2)𝑃𝑇(𝑡 − 𝜏2)) denotes the maximum
eigenvalue of the matrix ((1/2)𝑃(𝑡 − 𝜏2)𝑃𝑇(𝑡 − 𝜏2)) and
min(𝐻𝑘𝑖) denotes the minimum value among {𝐻𝑘𝑖 | 𝑖 =1, 2, . . . , 𝑁}, 𝑃(𝑡 − 𝜏2) = 𝐶(𝑡 − 𝜏2) ⊗ 𝐻𝐿. As a result, the
drive system (1) and the response system (3) will achieve
synchronization asymptotically and the original topology
matrix 𝐶(𝑡) will be detected by 𝐶(𝑡) eventually; that is,

lim
𝑡→∞

󵄩󵄩󵄩󵄩󵄩𝑒𝑦𝑖 (𝑡)󵄩󵄩󵄩󵄩󵄩 = 0,
lim
𝑡→∞

󵄩󵄩󵄩󵄩󵄩𝐶 (𝑡) − 𝐶 (𝑡)󵄩󵄩󵄩󵄩󵄩 = 0,
𝑖, 𝑗 = 1, 2, . . . , 𝑁.

(8)

Proof. Consider the scalar function 𝑉 as

𝑉 = 12
𝑁∑
𝑖=1

𝑒𝑦𝑖𝑇 (𝑡) 𝑒𝑦𝑖 (𝑡) + 12
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑐2𝑖𝑗 (𝑡)

+ 12 ∫
𝑡

𝑡−𝜏
1

𝑁∑
𝑖=1

𝑒𝑇𝑦𝑖 (𝜃) 𝑒𝑦𝑖 (𝜃) 𝑑𝜃.
(9)

Calculate the derivative of the scalar function (9) with the
control law (6) and we get

�̇� = 𝑁∑
𝑖=1

𝑒𝑇𝑦𝑖 (𝑡) ̇𝑒𝑦𝑖 (𝑡) + 𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑐𝑖𝑗 (𝑡) ̇̂𝑐𝑖𝑗 (𝑡)

+ 12
𝑁∑
𝑖=1

𝑒𝑇𝑦𝑖 (𝑡) 𝑒𝑦𝑖 (𝑡) − 12
𝑁∑
𝑖=1

𝑒𝑇𝑦𝑖 (𝑡 − 𝜏1) 𝑒𝑦𝑖 (𝑡 − 𝜏1)
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= 𝑁∑
𝑖=1

𝑒𝑇𝑦𝑖 (𝑡)𝐻 (𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑥𝑖 (𝑡 − 𝜏2)))
+ 𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑐𝑖𝑗 (𝑡) 𝑒𝑇𝑦𝑖 (𝑡)𝐻𝐿𝑦𝑗 (𝑡 − 𝜏1)

+ 𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑐𝑖𝑗 (𝑡 − 𝜏2) 𝑒𝑇𝑦𝑖 (𝑡)𝐻𝐿𝑒𝑦𝑗 (𝑡 − 𝜏1)

− 𝑁∑
𝑖=1

𝑒𝑇𝑦𝑖 (𝑡)𝐻𝑘𝑖𝑒𝑦𝑖 (𝑡) + 𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑐𝑖𝑗 (𝑡) ̇̂𝑐𝑖𝑗 (𝑡)

+ 12
𝑁∑
𝑖=1

𝑒𝑇𝑦𝑖 (𝑡) 𝑒𝑦𝑖 (𝑡) − 12
𝑁∑
𝑖=1

𝑒𝑇𝑦𝑖 (𝑡 − 𝜏1) 𝑒𝑦𝑖 (𝑡 − 𝜏1)
= 𝑁∑
𝑖=1

𝑒𝑇𝑦𝑖 (𝑡)𝐻 (𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑥𝑖 (𝑡 − 𝜏2)))
+ 𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑐𝑖𝑗 (𝑡 − 𝜏2) 𝑒𝑇𝑦𝑖 (𝑡)𝐻𝐿𝑒𝑦𝑗 (𝑡 − 𝜏1)

− 𝑁∑
𝑖=1

𝑒𝑇𝑦𝑖 (𝑡)𝐻𝑘𝑖𝑒𝑦𝑖 (𝑡) + 12
𝑁∑
𝑖=1

𝑒𝑇𝑦𝑖 (𝑡) 𝑒𝑦𝑖 (𝑡)
− 12
𝑁∑
𝑖=1

𝑒𝑇𝑦𝑖 (𝑡 − 𝜏1) 𝑒𝑦𝑖 (𝑡 − 𝜏1) .
(10)

According to (A2), (A3), and (L4), we have

�̇� ≤ 𝑁∑
𝑖=1

𝑒𝑇𝑦𝑖 (𝑡) 𝛼𝑒𝑦𝑖 (𝑡)
+ 𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑐𝑖𝑗 (𝑡 − 𝜏2) 𝑒𝑇𝑦𝑖 (𝑡)𝐻𝐿𝑒𝑦𝑗 (𝑡 − 𝜏1)

− 𝑁∑
𝑖=1

𝑒𝑇𝑦𝑖 (𝑡)𝐻𝑘𝑖𝑒𝑦𝑖 (𝑡) + 12
𝑁∑
𝑖=1

𝑒𝑇𝑦𝑖 (𝑡) 𝑒𝑦𝑖 (𝑡) − 12
⋅ 𝑁∑
𝑖=1

𝑒𝑇𝑦𝑖 (𝑡 − 𝜏1) 𝑒𝑦𝑖 (𝑡 − 𝜏1) ≤ 𝛼𝑒𝑇𝑦 (𝑡) 𝑒𝑦 (𝑡) + 𝑒𝑇𝑦 (𝑡)
⋅ 𝑃 (𝑡 − 𝜏2) 𝑒𝑦 (𝑡 − 𝜏1) −min (𝐻𝑘𝑖) 𝑒𝑇𝑦 (𝑡) 𝑒𝑦 (𝑡) + 12
⋅ 𝑒𝑇𝑦 (𝑡) 𝑒𝑦 (𝑡) − 12𝑒𝑇𝑦 (𝑡 − 𝜏1) 𝑒𝑦 (𝑡 − 𝜏1) ≤ 𝛼𝑒𝑇𝑦 (𝑡)
⋅ 𝑒𝑦 (𝑡) + 12𝑒𝑇𝑦 (𝑡) 𝑃 (𝑡 − 𝜏2) 𝑃𝑇 (𝑡 − 𝜏2) 𝑒𝑦 (𝑡) + 12
⋅ 𝑒𝑇𝑦 (𝑡 − 𝜏1) 𝑒𝑦 (𝑡 − 𝜏1) −min (𝐻𝑘𝑖) 𝑒𝑇𝑦 (𝑡) 𝑒𝑦 (𝑡)
+ 12𝑒𝑇𝑦 (𝑡) 𝑒𝑦 (𝑡) − 12𝑒𝑇𝑦 (𝑡 − 𝜏1) 𝑒𝑦 (𝑡 − 𝜏1) ≤ (𝛼

+ 𝜆max (12𝑃 (𝑡 − 𝜏2) 𝑃𝑇 (𝑡 − 𝜏2)) + 12
−min (𝐻𝑘𝑖)) 𝑒𝑇𝑦 (𝑡) 𝑒𝑦 (𝑡) ,

(11)

where 𝑒𝑦(𝑡) = [𝑒𝑇𝑦1(𝑡), 𝑒𝑇𝑦2(𝑡), . . . , 𝑒𝑇𝑦𝑁(𝑡)]𝑇 ∈ 𝑅𝑁, and hence
we get

�̇� ≤ (𝛼 + 𝜆max (12𝑃 (𝑡 − 𝜏2) 𝑃𝑇 (𝑡 − 𝜏2)) + 12
−min (𝐻𝑘𝑖)) 𝑒𝑇𝑦 (𝑡) 𝑒𝑦 (𝑡) .

(12)

Taking (𝛼 + 𝜆max((1/2)𝑃(𝑡 − 𝜏2)𝑃𝑇(𝑡 − 𝜏2)) + 1/2 −
min(𝐻𝑘𝑖)) < 0 from (7), we have �̇� ≤ 0. Evidently, �̇� = 0
if and only if 𝑒𝑦(𝑡) = 0; then 𝐸 = {�̇� = 0} = {𝑒𝑦(𝑡) = 0}.
Along with the output error dynamical system (5), if 𝐶(𝑡) −𝐶(𝑡) ̸= 0, then ̇𝑒𝑦𝑖(𝑡) ̸= 0, 𝑒𝑦𝑖(𝑡) would not be fixed at the
zero point. That means the largest invariant set𝑀 contained
in 𝐸 is 𝑀 = {𝑒𝑦(𝑡) = 0, 𝐶(𝑡) − 𝐶(𝑡) = 0}. According to
LaSalle’s invariance principle [29], with arbitrary initial values
of the output error dynamical system (5), the trajectories
converge asymptotically to the set 𝑀, which ensures us the
detection quality of the complex network’s topology. The
proof is completed.

4. Numerical Simulations

In this section, a representative example is shown to verify
the effectiveness of the topology detection scheme proposed
in Section 3. Here, the node dynamics is characterized by the
chaotic system. The Lorenz system is one of the most typical
chaotic systems, which could be described by

�̇�𝑖1 (𝑡) = 𝑎 (𝑥𝑖2 (𝑡) − 𝑥𝑖1 (𝑡)) ,
�̇�𝑖2 (𝑡) = 𝑐𝑥𝑖1 (𝑡) − 𝑥𝑖2 (𝑡) − 𝑥𝑖1 (𝑡) 𝑥𝑖3 (𝑡) ,
�̇�𝑖3 (𝑡) = 𝑥𝑖1 (𝑡) 𝑥𝑖2 (𝑡) − 𝑏𝑥𝑖3 (𝑡) ,

(13)

when 𝑎 = 10, 𝑏 = 8/3, and 𝑐 = 28, and the Lorenz system
will show the chaotic characteristics. For any two state vectors𝑥𝑖 and 𝑥𝑗 of the Lorenz system, there exists a constant 𝜃
satisfying ‖𝑥𝑖𝑘‖ ≤ 𝜃 and ‖𝑥𝑗𝑘‖ ≤ 𝜃 since chaotic attractor is
bounded in a certain region; thus we obtain

󵄩󵄩󵄩󵄩󵄩𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑗)󵄩󵄩󵄩󵄩󵄩
= √(𝑥𝑗1𝑥𝑗3 − 𝑥𝑖1𝑥𝑖3)2 + (𝑥𝑖1𝑥𝑖2 − 𝑥𝑗1𝑥𝑗2)2
≤ 2𝜃 󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗󵄩󵄩󵄩󵄩󵄩 = 𝛼 󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗󵄩󵄩󵄩󵄩󵄩 .

(14)

Obviously, (A2) can be easily satisfied in the Lorenz
system.



Mathematical Problems in Engineering 5

1 4

6 2

3 5

Figure 1: Drive network topology (𝑡 < 25).
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Figure 2: Drive network topology (𝑡 > 25).

A general complex dynamical network consisting of 6
identical nodes is chosen for the simulation. When 𝑡 < 25,
the topological structure is described by Figure 1:

𝐶 = (𝑐𝑖𝑗)6×6 =
[[[[[[[[[[[
[

0 0 0 0 0 0
0 −2 1 1 0 0
1 0 −1 0 0 0
1 0 2 −3 0 0
0 1 1 0 −2 0
2 0 1 1 0 −4

]]]]]]]]]]]
]

. (15)

We suppose that when 𝑡 > 25, the topology matrix of the
drive system changes from Figures 1 and 2:

𝐶 = (𝑐𝑖𝑗)6×6 =
[[[[[[[[[[[
[

−3 0 0 0 1 2
0 −2 1 1 0 0
1 0 −1 0 0 0
1 0 2 −3 0 0
0 1 1 0 −2 0
2 0 1 1 0 −4

]]]]]]]]]]]
]

. (16)

Applying the network with 6 identical nodes mentioned
above to the network model (1), we get

�̇�𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 𝑁∑
𝑗=1

𝑐𝑖𝑗𝐿𝑦𝑗 (𝑡 − 1) ,
𝑦𝑖 (𝑡) = 𝐻𝑥𝑖 (𝑡) ,

𝑖 = 1, 2, . . . , 6.
(17)

Treating the network model (17) as the drive system, we
build the corresponding response system as follows:

̇̂𝑥𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 𝑁∑
𝑗=1

𝑐𝑖𝑗𝐿𝑦𝑗 (𝑡 − 1)
− 𝑘𝑖 (𝑦𝑖 (𝑡) − 𝑦𝑖 (𝑡 − 2)) ,

𝑦𝑖 (𝑡) = 𝐻𝑥𝑖 (𝑡) ,
(18)

where 𝑖 = 1, 2, . . . , 6, 𝑥𝑖(𝑡) = [𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡), 𝑥𝑖3(𝑡)]𝑇,
𝑓 (𝑥𝑖 (𝑡)) = [[[

𝑎 (𝑥𝑖2 (𝑡) − 𝑥𝑖1 (𝑡))𝑐𝑥𝑖1 (𝑡) − 𝑥𝑖2 (𝑡) − 𝑥𝑖1 (𝑡) 𝑥𝑖3 (𝑡)𝑥𝑖1 (𝑡) 𝑥𝑖2 (𝑡) − 𝑏𝑥𝑖3 (𝑡)
]]
]
,

𝑥𝑖 (𝑡) = [𝑥𝑖1 (𝑡) , 𝑥𝑖2 (𝑡) , 𝑥𝑖3 (𝑡)]𝑇 ,
𝐿 = [𝑙1, 𝑙2, 𝑙3]𝑇 ,
𝐻 = [ℎ1, ℎ2, ℎ3] .

(19)

For simplicity, the coupling time delay is set as 𝜏1 = 1, and
the transmission time delay is set as 𝜏2 = 2. Other parameters
of the complex network are chosen as

𝑘𝑖 = [100 100 100]𝑇 ,
𝐿 = [1 1 1]𝑇 ,
𝐻 = [1 0 0] .

(20)

The initial values of the drive and response system’ state
variables and all elements of the estimated topology matrix
are set randomly in the interval [0, 1].

Since (A2) and (A3) hold, the response system (18) can
detect the topology and track its changes of the drive system
(17) with the control law (6). Meanwhile, the outputs of error
dynamical system converge to zero as 𝑡 → ∞. Figure 3 shows
the process of the response system detecting and tracking
the target topology. The trajectories of outputs of the error
dynamical system are shown in Figure 4.

From Figure 4, we can see that detecting the target
topological structure and tracking its changes in real time
are successful. The present research exposes the feasibility of
achieving the topology identification in terms of inevitable
coupling and transmission time delays when unexpected
changes occur in the target network topology.
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Figure 3: Detecting the topology of the drive system (17).
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Figure 4: Trajectories of outputs of error dynamical system.The red line is the output 𝑒𝑦1 of node 𝑥1, the green line is the output 𝑒𝑦2 of node𝑥2, the blue line is the output 𝑒𝑦3 of node 𝑥3, the yellow line is the output 𝑒𝑦4 of node 𝑥4, the black line is the output 𝑒𝑦5 of node 𝑥5, and the
last line is the output 𝑒𝑦6 of node 𝑥6.
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5. Conclusions

In summary, a topology detection approach based on the state
observer has been proposed in this paper. We transmit the
outputs of the general complex dynamical network as the
control signals. The coupling delay and transmission delay
are both taken into account in the output-coupling complex
network model at the same time. The transmission delay is
not needed to be determined exactly, which is proved to have
no influence on the topology-detected process. By means of
LaSalle’s invariance principle, we guarantee the asymptotic
stability of the output error dynamical system and complete
the derivation process. Numerical simulations have indicated
that the target topology matrix can be completely estimated
in terms of inevitable coupling and transmission time delays.
Also, we can achieve the real-time monitoring of changes of
the target network topology.
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