293 research outputs found

    Passive Compliance Control of Aerial Manipulators

    Get PDF
    This paper presents a passive compliance control for aerial manipulators to achieve stable environmental interactions. The main challenge is the absence of actuation along body-planar directions of the aerial vehicle which might be required during the interaction to preserve passivity. The controller proposed in this paper guarantees passivity of the manipulator through a proper choice of end-effector coordinates, and that of vehicle fuselage is guaranteed by exploiting time domain passivity technique. Simulation studies validate the proposed approach.Comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 201

    Introduction to the Special Issue on Aerial Manipulation

    Get PDF
    The papers in this special section focus on aerial manipulation which is intended as grasping, positioning, assembling and disassembling of mechanical parts, measurement instruments and any other kind of objects, performed by a flying robot equipped with arms and grippers. Aerial manipulators can be helpful in those industrial and service applications that are considered very dangerous for a human operator. For instance, think of tasks like the inspection of a bridge, the inspection and the fixing-up of high-voltage electric lines, the repairing of rotor blades and so on. These tasks are both very unsafe and expensive because they require the performance of professional climbers and/or specialists in the field. A drone with manipulation capabilities can instead assist the human operator in these jobs or, at least, in the most hazardous and critical situations. As a matter of fact, such devices can indeed operate in dangerous tasks like reaching the bottom of the deck of a bridge or the highest places of a plant or a building; they can avoid dangerous work at height; aerial platforms can increase the total number of inspections of a plant, monitoring the wear of the components. Without doubts, aerial manipulation will improve the quality of the job of many workers

    Safe local aerial manipulation for the installation of devices on power lines: Aerial-core first year results and designs

    Get PDF
    Article number 6220The power grid is an essential infrastructure in any country, comprising thousands of kilometers of power lines that require periodic inspection and maintenance, carried out nowadays by human operators in risky conditions. To increase safety and reduce time and cost with respect to conventional solutions involving manned helicopters and heavy vehicles, the AERIAL-CORE project proposes the development of aerial robots capable of performing aerial manipulation operations to assist human operators in power lines inspection and maintenance, allowing the installation of devices, such as bird flight diverters or electrical spacers, and the fast delivery and retrieval of tools. This manuscript describes the goals and functionalities to be developed for safe local aerial manipulation, presenting the preliminary designs and experimental results obtained in the first year of the project.European Union (UE). H2020 871479Ministerio de Ciencia, Innovación y Universidades de España FPI 201

    Study of an UAV implementation for solar panel cleaning

    Get PDF
    This bachelor final thesis delves into the computational resolution of transport equations, with a focus on introducing the student to Computational Fluid Dynamics (CFD) simulations. The objective of this research is achieved through the development of custom codes capable of solving problems presented by the Heat and Mass Transfer Technological Center (CTTC) [1] at the Technical University of Catalonia (UPC). Using the Finite Volume Method (FVM) and an algorithm based on the Fractional Step Method (FSM) for incompressible fluids, the equations of mass, momentum, and energy are solved. The student has personally programmed and verified all the codes using the C++ language. Special attention is given to comprehending the theoretical and computational implications of the Navier-Stokes equations, with a deliberate selection of progressively challenging problems that cover various aspects of these equations, culminating in the study of turbulence. The investigation extensively analyzes the contribution of convective and diffusive terms, beginning with the solution of a pure diffusion case and progressing to the numerical solution of a general convection-diffusion equation. Additionally, the study focuses on applied cases relevant to the aerospace industry, such as airflow around airfoils and cooled blades. However, this work only considers the convective and diffusive terms, as its primary goal is to lay the foundation for a future model examining the feasibility of hydrogen-powered aircraft engines in terms of turbine blade material resistance. The Fractional Step Method is applied to solve both internal flow scenarios, encompassing forced and natural convection, and external flow situations, specifically the flow around a square cylinder. The research investigates various aspects of turbulence and implements them in resolving the Burgers equation and a three-dimensional channel flow. Concluding the thesis, a proposal for future steps is presented, outlining an advanced research project that involves an in-depth exploration of turbulence models and the utilization of High Performance Computing (HPC)

    Design and control of next-generation uavs for effectively interacting with environments

    Get PDF
    In this dissertation, the design and control of a novel multirotor for aerial manipulation is studied, with the aim of endowing the aerial vehicle with more degrees of freedom of motion and stability when interacting with the environments. Firstly, it presents an energy-efficient adaptive robust tracking control method for a class of fully actuated, thrust vectoring unmanned aerial vehicles (UAVs) with parametric uncertainties including unknown moment of inertia, mass and center of mass, which would occur in aerial maneuvering and manipulation. The effectiveness of this method is demonstrated through simulation. Secondly, a humanoid robot arm is adopted to serve as a 6-degree-of-freedom (DOF) automated flight testing platform for emulating the free flight environment of UAVs while ensuring safety. Another novel multirotor in a tilt-rotor architecture is studied and tested for coping with parametric uncertainties in aerial maneuvering and manipulation. Two pairs of rotors are mounted on two independently-controlled tilting arms placed at two sides of the vehicle in a H configuration to enhance its maneuverability and stability through an adaptive robust control method. In addition, an impedance control algorithm is deployed in the out loop that modifies the trajectory to achieve a compliant behavior in the end-effector space for aerial drilling and screwing tasks

    Payload Grasping and Transportation by a Quadrotor with a Hook-Based Manipulator

    Full text link
    The paper proposes an efficient trajectory planning and control approach for payload grasping and transportation using an aerial manipulator. The proposed manipulator structure consists of a hook attached to a quadrotor using a 1 DoF revolute joint. To perform payload grasping, transportation, and release, first, time-optimal reference trajectories are designed through specific waypoints to ensure the fast and reliable execution of the tasks. Then, a two-stage motion control approach is developed based on a robust geometric controller for precise and reliable reference tracking and a linear--quadratic payload regulator for rapid setpoint stabilization of the payload swing. The proposed control architecture and design are evaluated in a high-fidelity physical simulator with external disturbances and also in real flight experiments.Comment: Submitted to IEEE Robotics and Automation Letters (2023

    Hierarchical task control for aerial inspection

    Get PDF
    This paper presents a task oriented control strategy for aerial vehicles equipped with a robotic arm and a camera attached to its end-effector. With this setting the camera can reach a new set of orientations previously not feasible for the quadrotor. The over-actuation of the whole system is exploited with a hierarchical control law to achieve a primary task consisting on a visual servoing control, whilst secondary tasks can also be attained to minimize gravitational effects or undesired arm configurations. Results are shown in a Robot Operating System (ROS) simulation.Peer ReviewedPostprint (author’s final draft

    Oscillation Damping Control of Pendulum-like Manipulation Platform using Moving Masses

    Get PDF
    This paper presents an approach to damp out the oscillatory motion of the pendulum-like hanging platform on which a robotic manipulator is mounted. To this end, moving masses were installed on top of the platform. In this paper, asymptotic stability of the platform (which implies oscillation damping) is achieved by designing reference acceleration of the moving masses properly. A main feature of this work is that we can achieve asymptotic stability of not only the platform, but also the moving masses, which may be challenging due to the under-actuation nature. The proposed scheme is validated by the simulation studies.Comment: IFAC Symposium on Robot Control (SYROCO) 201

    Cooperative aerial manipulation with force control and attitude stabilization

    Get PDF
    Ranging from autonomous flying cars, fixed wing and rotorcraft UAVs, there has been a tremendous interest in aerial robotics over the last decade. This thesis presents contributions to the state-of-art in cooperative payload transport with force synthesis and dynamic interaction using quadcopter UAVs. In this report, we consider multiple quadcopter aerial robots and develop decentralized force controller for them to manipulate a payload. We use quadcopters with a rigid link attached to it to collaboratively manipulate the payload. We develop a dynamic model of the payload for both point mass and rigid body cases. We model the contact force between the agents and the payload as a mass spring model. This assumption is valid when the vehicles are connected to the payload via elastic cables or when the payload is flexible or surrounded by elastic bumper materials. We also extend our aerial manipulation system to a multi-link arm attached to the quadcopter.We develop an adaptive decentralized control law for transporting a payload of unknown mass without explicit communication between the agents. Our controller ensures that all quadcopters and the payload asymptotically converges to a constant reference velocity. It also ensures that all of the forces applied to the payload converges to desired set-points. Desired thrusts and attitude angles are computed from the control algorithms and a low-level PD controller is implemented to track the desired commands for each quadcopter. The sum of the estimates of the unknown mass from all the agents converge to the true mass. We also employ a consensus algorithm based on connected graphs to ensure that each agent gets an equal share of the payload mass. Furthermore, we develop an orientation control algorithm that guarantees attitude stabilization of the payload. In particular, we develop time varying force set-points to enforce attitude regulation without any moment inputs from the quadcopters
    corecore