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Abstract: This paper presents an approach to damp out the oscillatory motion of the
pendulum-like hanging platform on which a robotic manipulator is mounted. To this end,
moving masses were installed on top of the platform. In this paper, asymptotic stability of
the platform (which implies oscillation damping) is achieved by designing reference acceleration
of the moving masses properly. A main feature of this work is that we can achieve asymptotic
stability of not only the platform, but also the moving masses, which may be challenging due
to the under-actuation nature. The proposed scheme is validated by the simulation studies.
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1. INTRODUCTION

Control of robotic manipulators on a fixed or wheeled base
is well studied in the robot control community; see, e.g.,
Borst et al. (2009); Englsberger et al. (2014); Kim et al.
(2015, 2017). In order to further increase the workspace of
the manipulation, a recently proposed solution is given by
the combination of a robotic manipulator with a flying
base (Fig. 1a), e.g. a helicopter Kondak et al. (2013);
Huber et al. (2013); Kim et al. (2018). However it has
a drawback due to the large rotor blades which may cause
safety issues when operating in a complex environment.
To alleviate this drawback, a new configuration, which
can decouple the helicopter and manipulator, is proposed.
In this configuration, the robotic manipulator is mounted
on a floating platform, which can be suspended on the
helicopter by means of wires (Fig. 1b). If the flying
helicopter is controlled to be fixed, then the hanging
platform is nothing but the oscillating pendulum.

In the control point of view, the main challenge is the
oscillations caused by the external force and the movement
of the robotic manipulator. Potter et al. (2015); Chen et al.
(2016); Vyhĺıdal et al. (2017) solved similar problems by
controlling the base. In this paper, because the precise
control of the base (helicopter) is not so trivial for our
system, additional moving masses are installed to damp
out the oscillations of the pendulum-like hanging platform.
Furthermore, to reduce the complexity of the problem, so
that we can focus only on the oscillation damping of the
platform, propellers are considered to control yaw angle
of the platform. Notice that the proposed configuration is
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Fig. 1. Schematic diagram of the system of interest.
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an under-actuated mechanical system with a fewer control
input than the degrees of freedom (DoF).

Control of under-actuated systems is still an active re-
search field, as the stabilization is not always trivial Shiri-
aev et al. (2014); Lee et al. (2015). Spong and Praly
(1997) introduced the energy-based methods with satura-
tion function to swing up the Acrobot, which is a two-link
planar robot with one actuator at the elbow. Albu-Schäffer
and Petit (2012) have also applied the potential energy
shaping control for the underactuated Euler-Lagrange sys-
tems by introducing a new feedback state variable, which
are statically equivalent to the non-collocated state vari-
ables. However from the configuration (Fig. 1b), it can
be seen that when the system is stable at a fixed height,
the potential energy reaches a constant value, no matter
where are the moving masses at the platform. Therefore,
the moving masses can have multiple equilibrium points,
which is not appealing. Based on this observation, it can
be concluded that (potential) energy shaping method is
not suitable for this configuration. Spong (1994) made use
of the collocated/non-collocated partial feedback lineariza-
tion (PFL) to control the output dynamics by exploiting
the strong inertial coupling under a certain condition.
However the remaining dynamic after PFL (internal dy-
namics) should be carefully taken into account to achieve
asymptotic stability of the overall dynamics.

In this paper, we present an extension of PFL technique to
asymptotically stabilize the output dynamics as well as in-
ternal dynamics. In this paper, within the PFL framework,
the dynamics of the moving mass is the output dynamics,
and that of the platform orientation is the internal dynam-
ics which does not have collocated actuation. To overcome
the absence of the actuation, the internal dynamics is
accessed using the reference acceleration of the moving
masses. By designing it properly, the internal dynamics
as well as the output dynamics can be asymptotically
stabilized at the same time. The proposed approach is
verified through simulation studies.

The rest the paper is organized as follows. Section 2
introduces the modeling of the system and states the
problem definition. Moreover, a motivating example that
shows limitation of the standard PFL approach will be
shown. To overcome the limitation, the extension of PFL
with stabilization of internal dynamics will be proposed
in Section 3. Simulation validation will be illustrated in
Section 4. Section 5 concludes the paper.

2. SYSTEM MODELING AND PROBLEM
DEFINITION

2.1 System description and control goal

A schematic diagram of the system of interest is shown
in Fig. 1b. A robotic manipulator is mounted on the
platform which is suspended by means of the wire which
can be connected to, for example, a flying helicopter or a
crane. Because the pendulum-like platform may oscillate
due to the external disturbances (e.g. wind gust) and the
movement of the robotic manipulator, the moving masses
are installed to damp out the oscillation. The main control
goal is to achieve oscillation damping of the platform
(i.e., achieving zero roll and pitch angles) using moving

masses. Propellers are considered to control yaw angle
independently (see Fig. 1b), so that we can focus only on
the oscillation damping problem.

The equation of motion can be expressed as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)

where the vector q = [qTp qTm qTr ]T ∈ R3+2+n consists of

platform orientation qp ∈ R3, moving mass coordinates
qm ∈ R2, and the robotic arm coordinates qr ∈ Rn. In
this paper, qp is composed of roll, pitch, and yaw angles
α, β, γ; i.e., qp = [α β γ]T .The torque τ is given by

τ =

(
02×1
u

)
, with u =

(
τyaw
τm
τr

)
, τm ∈ R2 and τr ∈ Rn.

(2)

Equivalently, τ can be represented as

τ = Bu, (3)

where

B =

[
02×(3+n)
I3+n

]
∈ <(6+n)×(3+n). (4)

τyaw is the torque generated by propellers to control yaw
angle. τm and τr are forces/torques to control moving
masses and robotic manipulator, respectively. Note that
there is no actuation along the roll (α) and pitch (β)
angles of the platform, and this under-actuated nature
makes it difficult to achieve the control goal which can
be summarized as follows.

(1) Robotic manipulator variable qr converges to the
desired value qdesr .

(2) Platform yaw angle γ converges to the desired value
γdes.

(3) Platform roll and pitch angles α, β converge to zero
(oscillation damping and gravity compensation of the
pendulum-like platform).

(4) Moving mass variable qm converges to a certain
equilibrium point q∗m at which the moving masses
balance the static gravity torque when qr = qdesr .
Hereinafter, q∗m will be assumed to be known as it
can be pre-calculated.

2.2 Motivating example using standard PFL approach

In this section, a standard PFL technique will be applied
to achieve oscillation damping of the platform (i.e., α =
β = 0). To begin with, let us define the following notations
for later convenience.

• φ = [α β]T : Roll and pitch angles.
• Mφφ: First 2 by 2 block matrix of M.
• Mφm: First 2 by (4:5) block matrix of M. Maps q̈m

to φ̈.
• Cφφ ∈ <2×2 and Cφm ∈ <2×2 are defined similarly.
• gφ: First two components of g.

To apply PFL, define the output variable by

y =

(
γ
qm
qr

)
= BTq (5)

with the selection matrix B defined in (4). Then,

ÿ =BT q̈

=BT (M−1 −Cq̇− g + Bu). (6)



Using

u = (BTM−1B)−1
(
BTM−1(Cq̇ + g) + ÿref

)
, (7)

where ÿ = [γ̈ref q̈ref,Tm q̈ref,Tr ]T , we obtain

ÿ = ÿref . (8)

Defining

γ̈ref = −Dγ γ̇ −Kγ(γ − γdes), (9)

q̈refr = −Drq̇r −Kr(qr − qdesr ), (10)

the configuration of the robotic manipulator and yaw angle
will converge to the desired values. q̈refm will be designed
shortly to damp out the oscillation of the platform.

At this point, we introduce a well-known result from the
cascade control literature Seibert and Suarez (1990).

Theorem 1. Consider a system

ẋ1 =f1(x1), (11)

ẋ2 =f2(x1,x2). (12)

If ẋ1 = f1(x1) is locally asymptotically stable to x1 = 0
and ẋ2 = f2(0,x2) is locally asymptotically stable to
x2 = 0, then (11)-(12) is locally asymptotically stable to
x1 = 0 and x2 = 0.

By the cascade control theory (Theorem 1), γ ≡ γd,
qr ≡ qdr , and q̈m ≡ q̈refm can be used in the internal
dynamics which represent the dynamics of α and β (roll
and pitch angles of the platform):

Mφφφ̈+ Mφmq̈refm + Cφφφ̇+ Cφmq̇m + gφ = 0. (13)

From this equation, note that we can access the platform
roll and pitch dynamics by means of q̈refm . Assuming that
Mφm is invertible 1 , let us define q̈refm as follows to achieve
balancing of the platform.

q̈refm = M−1φm(Dφφ̇+ Kφφ−Cφmq̇m − gφ). (14)

Then, the exponential convergence of φ is trivial, but the
behavior of qm becomes unclear. Applying Theorem 1 once
again, the closed-loop dynamics of qm is

Mφmq̈m + Cφmq̇m + gφ(qp = qdesp ,qm,qr = qdesr ) = 0.

(15)

Therefore, the moving masses are likely to experience
pendulum-like behavior due to the gravity force. 2

The presented control approach was simulated. Fig. 2
shows our simulation environment which is 3D extension
of Fig. 1b. Platform was hanged on a fixed base by
means of wires, and a 7-DoF robotic manipulator was
mounted on the platform. Two moving masses moves in
x−, y−directions on the platform. The height from the
platform to the base was 10 m. The weight of each moving
mass was 10 kg, and that of platform was also 10 kg. Total
weight of the robotic manipulator was 15 kg. Wires were
massless and no friction was considered. The following
scenario was simulated:

• γdes = 0.
• qdesr = [π/4 π/2 01×5]T with zero initial condition.
• q∗m = [−0.430813 0.434241] is a position to balance

the static gravity torque when qr = qdesr .

1 As a matter of fact, this is true, but will not be discussed in detail
since this fact will not be used in the main part (Sec. 3) of the paper.
2 To be precise, this argument is not correct as Mφm is not always
positive definite. This fact may make the actual analysis complicated.

(a) (b)

Fig. 2. Simulation environment. (a) Initial configuration
of the system. (b) Final configuration to achieve; the
platform is balanced (zero roll and pitch angles); the
robotic manipulator is in desired position; the moving
masses are properly located to balance the static
gravity of manipulator.
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Fig. 3. Simulation result for motivating example. Although
the platform was balanced, the moving masses fell into
an oscillatory motion.

• See Fig. 2a (initial configuration) and Fig. 2b (desired
configuration to achieve).

Fig. 3 shows the simulation results. As expected, the oscil-
lation damping of the platform was achieved successfully.
However, the moving masses converged to a oscillatory mo-
tion, which indicates the failure of the fourth requirement
of the control goal. In the following section, to achieve the
control goals, q̈refm will be designed to stabilize not only
the output dynamics, but also the internal dynamics.



3. OSCILLATION DAMPING CONTROL WITH
STABILIZATION OF INTERNAL DYNAMICS

The limitation of previous approach is that the internal
dynamics and output dynamics cannot be asymptotically
stabilized at the same time, which is not appealing because
the moving mass converges to a certain limit cycle rather
than staying in the equilibrium point q∗m. Therefore, this
section proposes an approach that can asymptotically
stabilize the internal dynamics as well as the output
dynamics.

More specifically, we seek q̈refm that stabilizes

Mφφφ̈+ Mφmq̈refm + Cφφq̇p + Cφmq̇m + gφ = 0, (16)

q̈m = q̈refm . (17)

However, as can be deduced from the previous example, it
might be hard to find such q̈refm mainly because of the
gravity gφ. Even if φ converges to zero in (16), gφ is
not zero because of nonzero qm. Unfortunately, nonzero
gravity will somehow appear in (17) (recall (15)), and
excites the moving masses. Converse is also true. Even if we
design q̈refm so that qm converges to a proper equilibrium
in (17), the gravity gφ is not zero due to nonzero φ. Again,
nonzero gravity will excite φ in the dynamics (16).

This difficulty can be overcome by expressing the dynamics
(1) using x, y components of CoM of the overall system
(represented in the global frame) xc instead of φ. This
approach is appealing because the gravity force acting on
xc is zero when xc = 0. To this end, consider the following
coordinate transformation:

˙̄q = T q̇, (18)

where

˙̄q =

 ẋc
γ̇
q̇m
q̇r

 (19)

and T is the properly defined transformation matrix.
Using this transformation, (1) can be expressed as

M̄¨̄q + C̄ ˙̄q + ḡ = T−T τ = T−TBu. (20)

Here, noting that

T−T =

[
∗ 0
∗ I

]
, (21)

the control input u does not affect the CoM dynamics.

Let us now apply PFL to the output defined in (5). From

ÿ =BT q̈ = BTT−1(¨̄q− Ṫ q̇)

=BTT−1
(
M̄−1(−C̄ ˙̄q− ḡ + T−TBu)− Ṫ q̇

)
, (22)

the control input u is defined by

u =(BTT−1M̄−1T−TB)−1×(
BTT−1

(
M̄−1(C̄ ˙̄q + ḡ) + Ṫ q̇

)
+ ÿref

)
. (23)

Furthermore, using (9)-(10), the closed-loop dynamics
after convergence of γ and qr is

M̄ccẍc + M̄cmq̈refm + C̄ccẋc + C̄cmq̇m + ḡc =0 (24)

q̈m =q̈refm (25)

with γ ≡ γdes and qr ≡ qdesr . Similar to previous, M̄cc

denotes the first 2 by 2 submatrix of M̄ (the subscript ‘c’

stands for CoM). M̄cm, C̄cc, C̄cm, and ḡc are defined in
the same manner.

The following theorem states the main result.

Theorem 2. Define

q̈refm = D
(
M̄T

cm(Dcẋc + Kcxc)

−Dmq̇m −Km(qm − q∗m)
)
. (26)

If the control gains D(·) and K(·) are chosen sufficiently
large with Dc,Kc � Dm,Km, then the closed-loop dy-
namics is exponentially stable to xc = 0, qm = q∗m which
implies oscillation damping because φ = 0.

Sketch of proof. The proof consists of two parts: The
first part shows boundedness, and the second part shows
exponential stability based on the first part. Before going
into the proof, we keep in mind that the state qm = q∗m
and xc = 0 with zero derivatives is the unique equilibrium
point, because ḡφ = 0 implies xc = 0.

For the first part, apply singular perturbation approach
by letting D = 1

ε1
I and Km = 1

ε1
I with ε1 > 0.

Then q̈refm itself becomes a fast variable, and converges to

q̈refm = M̄T
cm(Dcẍc+Kcẋc)+ ˙̄MT

cm(Dcẋc+Kcxc)−Kmq̇m
exponential fast in a new time scale t/ε1 when ε1 → 0.
This observation implies M̄T

cm(Dcẋc + Kcxc) −Dmq̇m −
Km(qm−q∗m) = 0, and another fast variable Km(qm−q∗m)
converges to M̄T

cm(Dcẋc + Kcxc) in the new time scale.
Then, the reduced system (24) becomes

(M̄cc + M̄cmM̄T
cmDc)ẍc + M̄cmM̄T

cmKcẋc + ḡc + δ = 0,

where the other terms are collected in δ of which lin-
earization is zero around the equilibrium point. Therefore,
local asymptotic stability of xc, ẋc can be shown easily.
As a result, by the Tikhonov Theorem (Khalil (1996)),
the resulting trajectory is bounded around the unique
equilibrium point when ε1 is sufficiently small.

For the second part, to apply singular perturbation theory
in a different way, let D = I, Dc = 1

ε2
I, Kc = 1

ε2
I

with ε1 � ε2 to avoid conflict with the first part. Then,
(25) becomes fast dynamics with the fast variable z =
1
ε2xc. Since gc vanishes with xc = 0, the fast variable

converges to z = (M̄cmM̄T
cm)−1

(
C̄cmq̇ + M̄cm(Dmq̇m +

Km(qm − q∗m))
)

and ż = 0. Therefore (24) becomes

M̄cmq̈m + C̄cmq̇m = 0 (note that C̄mcẋc = 0) which is
slow dynamics. Therefore, qm will either constantly drift
away or stay in a certain equilibrium point. Since the
boundedness is already guaranteed from the first part, qm
can only stay in the unique equilibrium point qm = q∗m,
which can be interpreted as exponential stability. Hence,
the original system (24)-(25) is exponentially stable with
sufficiently small ε1, ε2 satisfying ε1 � ε2. �

In the following remarks, to further motivate (26), we
introduce a couple of variations which may seem plausible
at a glance, but do not achieve control goals.

Remark 3. Consider

q̈refm = M̄T
cm(Dcẋc + Kcxc), (27)

which does not contain qm-related terms. Obviously, this
choice will result in xc → 0. However, xc = 0 does not
always imply φ = 0 because xc is the CoM represented in



Fig. 4. Simulation result with variation in Remark 3.
Although xc converged to 0, qm and qp diverged out.

the global reference frame. This variation will be discussed
in more detail with simulation results in next section.

Remark 4. One may want to extend (14) to have PD term
of qm similar to (26). However, correct extension is not
trivial as naive extension lead to non-unique equilibrium
point. For example, consider

q̈refm =M−1φm(Dφφ̇+ Kφφ−Cφmq̇m − gφ)

−Dmq̇m −Km(qm − q∗m). (28)

Equilibrium point is given by solving

M−1φm(Dφφ̇+ Kφφ) + Km(qm − q∗m) =0, (29)

gφ =0. (30)

Unfortunately, there is no unique solution for this set of
equations. This variation will be discussed in more detail
with simulation results in next section.

4. SIMULATION

In this section, after showing the simulation results for the
variations introduced in Remarks 3 and 4, the results for
the proposed approach is shown.

4.1 Simulation result for the variation in Remark 3

In Remark 3, only xc is considered in q̈refm design. By doing
so, xc converged to zero, as shown in the second row of Fig.
4. However, as pointed out in Remark 3, xc = 0 does not
imply φ = 0 (and also qm = q∗m). As shown in the third
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Fig. 5. Simulation result with variation in Remark 4.
Although qm is included in q̈refm design (28), qm and
qp did not converge to the desired equilibrium point.

and fourth row of Fig. 4, qp and qm can diverge out while
maintaining xc = 0. Note that qr = qdesr and γ = γdes

were still achieved because feedback linearization with
pole-placement (9)-(10) was applied to these variables.

4.2 Simulation result for the variation in Remark 4

In Remark 4, both qφ and qm were considered in q̈refm
design. This design may seem plausible as it tries to
stabilize qφ as well as qm at the same time. However, as
pointed out in Remark 4, equilibrium point is not unique.
As shown in Fig. 5, qm and qφ oscillated around the
desired point, but could not converge to it.

4.3 Simulation with the proposed approach

Fig. 5 shows simulation results with the proposed q̈refm in
(26). As expected, xc = 0 and qm = q∗m could be achieved.
Note that xc = 0 and qm = q∗m imply φ = 0, as shown in
the fourth row of Fig. 5. As discussed previously, qr and
γ converged and stayed in the desired equilibrium because
feedback linearzation with pole-placement technique was
applied to these variables.

5. CONCLUSION

In this paper, a pendulum-like hanging manipulation plat-
form is presented to overcome limitation of the aerial ma-
nipulation system. The main challenge in the control point
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Fig. 6. Simulation result with proposed approach. Both xc
and qm converged to the desired equilibrium point.
Note that this result indicates successful oscillation
damping of the platform as shown in the fourth row.

of view is the oscillation damping of the platform. Since
there is no actuation for the platform orientation (i.e.,
under-actuated), it can be controlled only indirectly. To
alleviate this problem, moving masses were installed on top
of the hanging platform. This paper tries to damp out the
platform oscillation by defining the reference acceleration
of the moving masses properly. In particular, it is shown
that the extension of PFL can be used to asymptotically
stabilize not only output dynamics (robotic manipulator
and yaw angle of the platform) but also the internal
dynamics (platform oscillation and moving mass). The
proposed approach was validated by simulation studies.
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Haddadin, S., and Albu-Schäffer, A. (2013). First anal-
ysis and experiments in aerial manipulation using fully
actuated redundant robot arm. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), 3452–3457.

Khalil, H.K. (1996). Noninear Systems. Prentice-Hall,
New Jersey.

Kim, M.J., Choi, Y., and Chung, W.K. (2015). Bringing
nonlinear H∞ optimality to robot controllers. IEEE
Transactions on Robotics, 31(3), 682–698.

Kim, M.J., Kondak, K., and Ott, C. (2018). A stabilizing
controller for regulation of uav with manipulator. IEEE
Robotics and Automation Letters, 3(3), 1719–1726.

Kim, M.J., Werner, A., Loeffl, F.C., and Ott, C. (2017).
Enhancing joint torque control of series elastic actuators
with physical damping. In IEEE International Confer-
ence on Robotics and Automation (ICRA), 1227–1234.

Kondak, K., Krieger, K., Albu-Schaeffer, A., Schwarzbach,
M., Laiacker, M., Maza, I., Rodriguez-Castano, A.,
and Ollero, A. (2013). Closed-loop behavior of an
autonomous helicopter equipped with a robotic arm
for aerial manipulation tasks. International Journal of
Advanced Robotic Systems, 10(2), 145.

Lee, S., Eom, M., and Chwa, D. (2015). Robust swing
up and balancing control of the acrobot based on a
disturbance observer. In 15th International Conference
on Control, Automation and Systems (ICCAS), 48–53.

Potter, J.J., Adams, C.J., and Singhose, W. (2015). A
planar experimental remote-controlled helicopter with a
suspended load. IEEE/ASME transactions on mecha-
tronics, 20(5), 2496–2503.

Seibert, P. and Suarez, R. (1990). Global stabilization of
nonlinear cascade systems. Systems & Control Letters,
14(4), 347–352.

Shiriaev, A.S., Freidovich, L.B., and Spong, M.W. (2014).
Controlled invariants and trajectory planning for under-
actuated mechanical systems. IEEE Transactions on
Automatic Control, 59(9), 2555–2561.

Spong, M.W. (1994). Partial feedback linearization
of underactuated mechanical systems. In Advanced
Robotic Systems and the Real World’, Proceedings of the
IEEE/RSJ/GI International Conference on Intelligent
Robots and Systems (IROS), volume 1, 314–321.

Spong, M.W. and Praly, L. (1997). Control of underac-
tuated mechanical systems using switching and satura-
tion. In Control using logic-based switching, 162–172.
Springer.
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