426 research outputs found

    What comes after optical-bypass network? A study on optical-computing-enabled network

    Full text link
    A new architectural paradigm, named, optical-computing-enabled network, is proposed as a potential evolution of the currently used optical-bypass framework. The main idea is to leverage the optical computing capabilities performed on transitional lightpaths at intermediate nodes and such proposal reverses the conventional wisdom in optical-bypass network, that is, separating in-transit lightpaths in avoidance of unwanted interference. In optical-computing-enabled network, the optical nodes are therefore upgraded from conventional functions of add-drop and cross-connect to include optical computing / processing capabilities. This is enabled by exploiting the superposition of in-transit lightpaths for computing purposes to achieve greater capacity efficiency. While traditional network design and planning algorithms have been well-developed for optical-bypass framework in which the routing and resource allocation is dedicated to each optical channel (lightpath), more complicated problems arise in optical-computing-enabled architecture as a consequence of intricate interaction between optical channels and hence resulting into the establishment of the so-called integrated / computed lightpaths. This necessitates for a different framework of network design and planning to maximize the impact of optical computing opportunities. In highlighting this critical point, a detailed case study exploiting the optical aggregation operation to re-design the optical core network is investigated in this paper. Numerical results obtained from extensive simulations on the COST239 network are presented to quantify the efficacy of optical-computing-enabled approach versus the conventional optical-bypass-enabled one.Comment: 17 pages, 3 figures, 4 tables; the author's version that has been accepted to Optical Fiber Technology Journal 202

    Enabling Technologies for Cognitive Optical Networks

    Get PDF

    Observing and Modeling the Physical Layer Phenomena in Open Optical Systems for Network planning and management

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Journal of Telecommunications and Information Technology, 2004, nr 2

    Get PDF
    kwartalni
    corecore