4,077 research outputs found

    The French Atlantic littoral and the Massif Armoricain, part 1

    Get PDF
    The author has identified the following significant results. For interpretation of Isle of Jersey imagery, two types of taxons were defined according to their variability in time. On the whole, taxons with a similar spectral signature were opposed to those with strongly varying spectral signature. The taxon types were low diachronic variations and strong diachronic variation. Imagery interpretation was restricted to the landward part of the Fromentine area, including the sand beaches which were often difficult to spectrally separate from the barren coastal dunes in the southern part of Noirmoutier Island as well as along the Breton marsh. From 1972 to 1976, sandbanks reduced in area. Two high river discharge images showed over a two year period an identical outline for the Bilho bank to seaward, whereas upstream, the bank has receeded in the same time to a line joining Paimboeuf to Montoir. The Brillantes bank has receeded at both ends, partly due to dredging operations in the access channel to Donges harbor

    Development, implementation and evaluation of satellite-aided agricultural monitoring systems

    Get PDF
    Research activities in support of AgRISTARS Inventory Technology Development Project in the use of aerospace remote sensing for agricultural inventory described include: (1) corn and soybean crop spectral temporal signature characterization; (2) efficient area estimation techniques development; and (3) advanced satellite and sensor system definition. Studies include a statistical evaluation of the impact of cultural and environmental factors on crop spectral profiles, the development and evaluation of an automatic crop area estimation procedure, and the joint use of SEASAT-SAR and LANDSAT MSS for crop inventory

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    System for analysis of LANDSAT agricultural data: Automatic computer-assisted proportion estimation of local areas

    Get PDF
    The author has identified the following significant results. A conceptual man machine system framework was created for a large scale agricultural remote sensing system. The system is based on and can grow out of the local recognition mode of LACIE, through a gradual transition wherein computer support functions supplement and replace AI functions. Local proportion estimation functions are broken into two broad classes: (1) organization of the data within the sample segment; and (2) identification of the fields or groups of fields in the sample segment

    LANDSAT and radar mapping of intrusive rocks in SE-Brazil

    Get PDF
    The feasibility of intrusive rock mapping was investigated and criteria for regional geological mapping established at the scale of 1:500,00 in polycyclic and polymetamorphic areas using the logic method of photointerpretation of LANDSAT imagery and radar from the RADAMBRASIL project. The spectral behavior of intrusive rocks, was evaluated using the interactive multispectral image analysis system (Image-100). The region of Campos (city) in northern Rio de Janeiro State was selected as the study area and digital imagery processing and pattern recognition techniques were applied. Various maps at the 2:250,000 scale were obtained to evaluate the results of automatic data processing

    Detecting agricultural to urban land use change from multi-temporal MSS digital data

    Get PDF
    Conversion of agricultural land to a variety of urban uses is a major problem along the Wasatch Front, Utah. Although LANDSAT MSS data is a relatively coarse tool for discriminating categories of change in urban-size plots, its availability prompts a thorough test of its power to detect change. The procedures being applied to a test area in Salt Lake County, Utah, where the land conversion problem is acute are presented. The identity of land uses before and after conversion was determined and digital procedures for doing so were compared. Several algorithms were compared, utilizing both raw data and preprocessed data. Verification of results involved high quality color infrared photography and field observation. Two data sets were digitally registered, specific change categories internally identified in the software, results tabulated by computer, and change maps printed at 1:24,000 scale

    Discrimination of rock classes and alteration products in southwestern Saudi Arabia with computer-enhanced LANDSAT data

    Get PDF
    Digital LANDSAT MSS data for an area in the southwestern Arabian Shield were computer-enhanced to improve discrimination of rock classes, and recognition of gossans associated with massive sulphide deposits. The test area is underlain by metamorphic rocks that are locally intruded by granites; these are partly overlain by sandstones. The test area further includes the Wadi Wassat and Wadi Qatan massive sulphide deposits, which are commonly capped by gossans of ferric oxides, silica, and carbonates. Color patterns and boundaries on contrast-stretched ratio color composite imagery, and on complementary images constructed using principal component and canonical analyses transformations, correspond exceptionally well to 1:100,000 scale field maps. A qualitative visual comparison of information content showed that the ratio enhancement provided the best overall image for identification of rock type and alteration products

    Investigation of LANDSAT follow-on thematic mapper spatial, radiometric and spectral resolution

    Get PDF
    The author has identified the following significant results. Fine resolution M7 multispectral scanner data collected during the Corn Blight Watch Experiment in 1971 served as the basis for this study. Different locations and times of year were studied. Definite improvement using 30-40 meter spatial resolution over present LANDSAT 1 resolution and over 50-60 meter resolution was observed, using crop area mensuration as the measure. Simulation studies carried out to extrapolate the empirical results to a range of field size distributions confirmed this effect, showing the improvement to be most pronounced for field sizes of 1-4 hectares. Radiometric sensitivity study showed significant degradation of crop classification accuracy immediately upon relaxation from the nominally specified values of 0.5% noise equivalent reflectance. This was especially the case for data which were spectrally similar such as that collected early in the growing season and also when attempting to accomplish crop stress detection

    ERTS-B applications to Minnesota resource management

    Get PDF
    The author has identified the following significant results. The shape, pattern, and extent of surface water (e.g. lakes) can be readily mapped. Comparing detailed maps of several lakes in Itasca County with the areas classified as water by the LANDSAT data shows that some lakes have changed considerably since they were mapped. Due to several droughts this year (1976), the water level in most lakes has dropped. At this time, it seems feasible that LANDSAT digital tape data estimate lake water level change, due to the 1976 drought conditions
    • …
    corecore