12,088 research outputs found

    Outlier Detection Techniques For Wireless Sensor Networks: A Survey

    Get PDF
    In the field of wireless sensor networks, measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the multivariate nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a decision tree to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier degree

    Outlier detection techniques for wireless sensor networks: A survey

    Get PDF
    In the field of wireless sensor networks, those measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a comparative table to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier identity, and outlier degree

    Robust Recovery of Subspace Structures by Low-Rank Representation

    Full text link
    In this work we address the subspace recovery problem. Given a set of data samples (vectors) approximately drawn from a union of multiple subspaces, our goal is to segment the samples into their respective subspaces and correct the possible errors as well. To this end, we propose a novel method termed Low-Rank Representation (LRR), which seeks the lowest-rank representation among all the candidates that can represent the data samples as linear combinations of the bases in a given dictionary. It is shown that LRR well solves the subspace recovery problem: when the data is clean, we prove that LRR exactly captures the true subspace structures; for the data contaminated by outliers, we prove that under certain conditions LRR can exactly recover the row space of the original data and detect the outlier as well; for the data corrupted by arbitrary errors, LRR can also approximately recover the row space with theoretical guarantees. Since the subspace membership is provably determined by the row space, these further imply that LRR can perform robust subspace segmentation and error correction, in an efficient way.Comment: IEEE Trans. Pattern Analysis and Machine Intelligenc

    Hypergraph Modelling for Geometric Model Fitting

    Full text link
    In this paper, we propose a novel hypergraph based method (called HF) to fit and segment multi-structural data. The proposed HF formulates the geometric model fitting problem as a hypergraph partition problem based on a novel hypergraph model. In the hypergraph model, vertices represent data points and hyperedges denote model hypotheses. The hypergraph, with large and "data-determined" degrees of hyperedges, can express the complex relationships between model hypotheses and data points. In addition, we develop a robust hypergraph partition algorithm to detect sub-hypergraphs for model fitting. HF can effectively and efficiently estimate the number of, and the parameters of, model instances in multi-structural data heavily corrupted with outliers simultaneously. Experimental results show the advantages of the proposed method over previous methods on both synthetic data and real images.Comment: Pattern Recognition, 201

    Spectral Embedding Norm: Looking Deep into the Spectrum of the Graph Laplacian

    Full text link
    The extraction of clusters from a dataset which includes multiple clusters and a significant background component is a non-trivial task of practical importance. In image analysis this manifests for example in anomaly detection and target detection. The traditional spectral clustering algorithm, which relies on the leading KK eigenvectors to detect KK clusters, fails in such cases. In this paper we propose the {\it spectral embedding norm} which sums the squared values of the first II normalized eigenvectors, where II can be significantly larger than KK. We prove that this quantity can be used to separate clusters from the background in unbalanced settings, including extreme cases such as outlier detection. The performance of the algorithm is not sensitive to the choice of II, and we demonstrate its application on synthetic and real-world remote sensing and neuroimaging datasets

    Fuzzy determination of informative frequency band for bearing fault detection

    Get PDF
    Detecting early faults in rolling element bearings is a crucial measure for the health maintenance of rotating machinery. As faulty features of bearings are usually demodulated into a high-frequency band, determining the informative frequency band (IFB) from the vibratory signal is a challenging task for weak fault detection. Existing approaches for IFB determination often divide the frequency spectrum of the signal into even partitions, one of which is regarded as the IFB by an individual selector. This work proposes a fuzzy technique to select the IFB with improvements in two aspects. On the one hand, an IFB-specific fuzzy clustering method is developed to segment the frequency spectrum into meaningful sub-bands. Considering the shortcomings of the individual selectors, on the other hand, three commonly-used selectors are combined using a fuzzy comprehensive evaluation method to guide the clustering. Among all the meaningful sub-bands, the one with the minimum comprehensive cost is determined as the IFB. The bearing faults, if any, can be detected from the demodulated envelope spectrum of the IFB. The proposed fuzzy technique was evaluated using both simulated and experimental data, and then compared with the state-of-the-art peer method. The results indicate that the proposed fuzzy technique is capable of generating a better IFB, and is suitable for detecting bearing faults
    corecore