13,330 research outputs found

    Verifying data- and control-oriented properties combining static and runtime verification : theory and tools

    Get PDF
    Static verification techniques are used to analyse and prove properties about programs before they are executed. Many of these techniques work directly on the source code and are used to verify data-oriented properties over all possible executions. The analysis is necessarily an over-approximation as the real executions of the program are not available at analysis time. In contrast, runtime verification techniques have been extensively used for control-oriented properties, analysing the current execution path of the program in a fully automatic manner. In this article, we present a novel approach in which data-oriented and control-oriented properties may be stated in a single formalism amenable to both static and dynamic verification techniques. The specification language we present to achieve this that of ppDATEs, which enhances the control-oriented property language of DATEs, with data- oriented pre/postconditions. For runtime verification of ppDATE specifications, the language is translated into a DATE. We give a formal semantics to ppDATEs, which we use to prove the correctness of our translation from ppDATEs to DATEs. We show how ppDATE specifi- cations can be analysed using a combination of the deductive theorem prover KeY and the runtime verification tool LARVA. Verification is performed in two steps: KeY first partially proves the data-oriented part of the specification, simplifying the specification which is then passed on to LARVA to check at runtime for the remaining parts of the specification including the control-oriented aspects. We show the applicability of our approach on two case studies.peer-reviewe

    COST Action IC 1402 ArVI: Runtime Verification Beyond Monitoring -- Activity Report of Working Group 1

    Full text link
    This report presents the activities of the first working group of the COST Action ArVI, Runtime Verification beyond Monitoring. The report aims to provide an overview of some of the major core aspects involved in Runtime Verification. Runtime Verification is the field of research dedicated to the analysis of system executions. It is often seen as a discipline that studies how a system run satisfies or violates correctness properties. The report exposes a taxonomy of Runtime Verification (RV) presenting the terminology involved with the main concepts of the field. The report also develops the concept of instrumentation, the various ways to instrument systems, and the fundamental role of instrumentation in designing an RV framework. We also discuss how RV interplays with other verification techniques such as model-checking, deductive verification, model learning, testing, and runtime assertion checking. Finally, we propose challenges in monitoring quantitative and statistical data beyond detecting property violation

    A Story of Parametric Trace Slicing, Garbage and Static Analysis

    Full text link
    This paper presents a proposal (story) of how statically detecting unreachable objects (in Java) could be used to improve a particular runtime verification approach (for Java), namely parametric trace slicing. Monitoring algorithms for parametric trace slicing depend on garbage collection to (i) cleanup data-structures storing monitored objects, ensuring they do not become unmanageably large, and (ii) anticipate the violation of (non-safety) properties that cannot be satisfied as a monitored object can no longer appear later in the trace. The proposal is that both usages can be improved by making the unreachability of monitored objects explicit in the parametric property and statically introducing additional instrumentation points generating related events. The ideas presented in this paper are still exploratory and the intention is to integrate the described techniques into the MarQ monitoring tool for quantified event automata.Comment: In Proceedings PrePost 2017, arXiv:1708.0688

    Towards the Formal Specification and Verification of Maple Programs

    Full text link
    In this paper, we present our ongoing work and initial results on the formal specification and verification of MiniMaple (a substantial subset of Maple with slight extensions) programs. The main goal of our work is to find behavioral errors in such programs w.r.t. their specifications by static analysis. This task is more complex for widely used computer algebra languages like Maple as these are fundamentally different from classical languages: they support non-standard types of objects such as symbols, unevaluated expressions and polynomials and require abstract computer algebraic concepts and objects such as rings and orderings etc. As a starting point we have defined and formalized a syntax, semantics, type system and specification language for MiniMaple

    A Historical Perspective on Runtime Assertion Checking in Software Development

    Get PDF
    This report presents initial results in the area of software testing and analysis produced as part of the Software Engineering Impact Project. The report describes the historical development of runtime assertion checking, including a description of the origins of and significant features associated with assertion checking mechanisms, and initial findings about current industrial use. A future report will provide a more comprehensive assessment of development practice, for which we invite readers of this report to contribute information

    Towards security monitoring patterns

    Get PDF
    Runtime monitoring is performed during system execution to detect whether the system’s behaviour deviates from that described by requirements. To support this activity we have developed a monitoring framework that expresses the requirements to be monitored in event calculus – a formal temporal first order language. Following an investigation of how this framework could be used to monitor security requirements, in this paper we propose patterns for expressing three basic types of such requirements, namely confidentiality, integrity and availability. These patterns aim to ease the task of specifying confidentiality, integrity and availability requirements in monitorable forms by non-expert users. The paper illustrates the use of these patterns using examples of an industrial case study
    • …
    corecore