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Where full static analysis of systems fails to scale up due to system size, dynamic monitoring has

been increasingly used to ensure system correctness. The downside is, however, runtime overheads

which are induced by the additional monitoring code instrumented. To address this issue, various

approaches have been proposed in the literature to use static analysis in order to reduce monitoring

overhead. In this paper we generalise existing work which uses control-flow static analysis to opti-

mise properties specified as automata, and prove how similar analysis can be applied to more expres-

sive symbolic automata - enabling reduction of monitoring instrumentation in the system, and also

monitoring logic. We also present empirical evidence of the effectiveness of this approach through

an analysis of the effect of monitoring overheads in a financial transaction system.

1 Introduction

The need for verification of a system to be able to make some guarantees about execution paths, and

going beyond sampling of such paths (as done in testing), is required for critical or sensitive software

(e.g. financial software [8]). The literature can be largely split into two main approaches: (i) full a

priori verification of all possible execution paths through model checking, static analysis and similar

techniques, and (ii) on-the-fly verification of execution paths to ensure that any potential violation can be

immediately truncated as in runtime verification.

The former approaches tend not to scale to more complex and large software, which is typically

addressed by abstraction techniques, e.g. verifying the property against an over-approximation of the

program (if the over-approximation cannot violate the property, then the program cannot either), due to

which the analysis is no longer complete. These approaches readily scale up to handle larger systems, and

have the additional advantage that they can also deal with constraints on the environment which can only

be verified fully at runtime (e.g. two methods of an API are never called in sequence by an unknown client

application). The downside is, however, that the additional checks introduced typically add significant

runtime overheads [17]. Traditionally, these two approaches have been seen as alternatives to each other,

although their possible complementarity has started to be explored in recent years [3, 11, 13].

Approaches exist that use static analysis to prove parts of a property with respect to a program, such

that either the whole property is proved statically or it is pruned such that there is less to monitor at

runtime, or vice-versa so that certain parts of the program are proved safe to not monitor. We call this

residual analysis, with the pruned property called a residual. In language-theoretic terms, the language of

a residual intersected with that of a program is equal to the language of the original property intersected

with the program. This paper deals with the creation of such residuals in the presence of properties

parametrised over different objects with different behaviour.
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In particular, Clara [11] is one such approach, acting on purely control-flow properties (without

any consideration for data state) defined as automata with transitions triggered by method calls in Java

programs. Through an analysis of the source code, Clara can be used to determine whether a property

transition can never be taken by the program and whether parts of a program can be safely unmonitored.

The approach uses three analysis steps, each equivalent to a comparison of the property automaton with

a finer over-approximation of the control-flow of a program. However, in practice, one frequently desires

properties which are more expressive than these simple automata (e.g. one may want to talk about the

value of a transaction after some sequence of events).

DATEs (Dynamic Automata with Events and Timers) [12] involve symbolic automata possibly run-

ning in parallel, with transitions triggered by either a method invocation or a timer event, and conditioned

on a boolean expression on variables specific to the monitor and the program. Moreover, when triggered,

a transition can also perform an action which may also affect the triggering of other transitions (e.g.

increase some internal counter used by another transition’s condition). In this paper, we do not handle

timers and the dynamic creation of DATEs, and focus on extending Clara to automata with transitions

guarded by conditions and actions as an initial step towards handling full DATEs. Even with this lim-

itation, applying Clara directly to DATEs proves to be unsound, as we shall discuss informally, given

transitions with side-effects may be removed (possibly changing the verdict of the reduced property).

Our contribution in this paper is two-fold: (i) extending the intuition behind Clara’s first two analyses

to produce both a residual DATE and a residual instrumentation of the program, and (ii) a novel analysis

that uses a control-flow graph of a program to determine if any transitions in a DATE can (or can not)

be reached by the program. In a case study, we show that each of these analyses can produce significant

reduction in runtime overheads (down to 4% from an average of 97% of the original unmonitored run

time), we also explain in which cases such results can be expected. Full proofs of the results presented

in this paper can be found in [7].

In presenting our results, we first detail some formal preliminaries, using simple automata with events

in Section 2 and use these to discuss Clara’s analyses, while in Section 3 we present DATEs and define

residuals over them, which we evaluate in Section 4. We discuss related work in Section 5, and conclude

proposing future work in Section 6. Due to space restrictions, the proofs of the results presented in this

paper are not included. However, they are available in a technical report available online [7].

2 Programs’ Runtime Traces and Abstractions

In this section we look at safety properties over the control-flow of a program, written in the form of

automata with transitions being triggered by the program1. We will build on this formalism in the rest of

the paper.

Definition 2.1 (Property automata). A property automaton π is a tuple 〈Q,Σ,q0,B,δ 〉, where Q is a finite

set of states, Σ is a set of events, q0 is the initial state (q0 ∈ Q), B is the set of bad states (B ⊆ Q), and δ

is the transition relation (δ ⊆ Q×Σ×Q), which is deterministic and total with respect to Q×Σ.

We write q
e
−→π q′ for (q,e,q′)∈ δ , q

es
=⇒π q′ for the transitive closure of δ (with es ∈ Σ∗), and q →֒π q′

to denote that q′ is reachable from q (i.e. ∃es ·q0
es
=⇒π q′). We leave out π if it is clear from the context.

Finally, we will write π ↾ Σ′ to denote the property automaton identical to π except that the alphabet

is restricted to Σ′: Σπ↾Σ′
def
= Σ′ and δπ↾Σ′

def
= {(q,e,q′) ∈ δπ | e ∈ Σ′}); and π ↾ δ ′ as π with the transition

relation restricted to δ ′: δπ↾δ ′
def
= δπ ∩δ ′.

1It is worth noting, that although we will allow for branching on data values in our formalism, we do not trigger transitions

over changes in data values, hence our characterisation of these properties as being over the control-flow of the program.



S. Azzopardi, C. Colombo & G.J. Pace 31

qastart qb

qc

qd

qe

*

open()

close()

write() open()

*

*

read()

read()

*

lookAhead(),

open()

*

Figure 1: Property disallowing writing on a closed stream, and writing or closing while in the middle of an odd

number of reads.

Consider that in monitoring we are concerned with points of interest during the execution of the pro-

gram (e.g. when a method is called), which correspond to particular statements or regions in a program’s

source code. We use these corresponding program statements to trigger events at runtime to enable

monitoring — and calling them event generators, since they generate property events. The problem of

verification is then, given a property automaton and a program, to ensure that all program traces gener-

ated do not transition into a bad property state [16]. We call t ∈ Σ∗ a ground trace, while we denote the

set of events appearing in t by Σ(t)
def
= {e | ∃i ∈ N · t(i) = e}, overloaded to sets of ground traces T ⊆ Σ∗.

Definition 2.2 (Property satisfaction). A ground trace t ∈ Σ∗ is said to satisfy property automaton π if

no prefix of t leads to a bad state from the initial state: t ⊢ π
def
= ∀t ′ ∈ prefixes(t) ·∄qB ∈ B ·q0

t ′

=⇒ qB. We

overload this notation to sets of ground traces T ⊢ π to indicate that all traces in T satisfy π .

Consider as an example the property automaton shown in Figure 1, which specifies that the write

method cannot be called before open is called, and that the read method is called in pairs2. Bad states are

marked in red, while an asterisk (*) on a transition is syntactic sugar used to denote that if at that state an

event happens for which no other transition matches, then the asterisk transition is taken.

In practice, one would want to instantiate a property automaton for every instance of the object being

verified. For example, the property automaton shown in Figure 1 should ideally be monitoring for every

stream in use. To enable such replication of property automata, we extend them to parametric properties

[14] (or typestate automata [11]). To generalise property automata to handle parametrisation, we start by

extending traces to parametrised traces in which each event is associated with an identifier of the object3

to which the event pertains. Note that we allow an alphabet to be parametrised by a set of identifiers α

with: Σα

def
= α ×Σ. Traces over such alphabets will be referred to as parametrised traces.

A trace contains events possibly related to different objects. To consider satisfaction of a property by

one object we project the trace onto that object (assuming an equivalence relation between the objects).

Definition 2.3 (Parametrised traces). The projection of a parametrised trace rt ∈ Σ
∗
α with respect to an

identifier x ∈ α and an equivalence relation between objects ≡ ∈ α ↔ α , written rt ↓ x, is defined to be
the sequence of items in rt with identifiers equivalent to x, as follows 4:

〈〉 ↓ x
def
= 〈〉

((x′,p) : rt) ↓ x
def
=

{

(x′,p) : (rt ↓ x) if x ≡ x′

rt ↓ x otherwise

2Note that in this example there are outgoing transitions from bad states, although any trace that goes through a bad state is

judged as violating. Clara’s and our semantics allow this, since we may want to count the number of violations, or in the case

of DATEs transitions may actually repair the violation (although we would still want to note it).
3Although we will be using the term ‘object’ in this paper, events can be parametrised with respect to an identity other than

the object on which the method is invoked.
4We use the standard notation x : xs to denote the list with head x and tail xs.
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A parametrised trace rt ∈ Σ
∗ is said to satisfy a property automaton π , written rt 
 π , if for each

identifier x ∈ α , the projection of rt onto x satisfies the property: rt 
 π
def
= ∀x ∈ α · rt ↓ x ⊢ π .

At runtime, we have perfect knowledge of the equivalence relation between parametrised events.

However, when using static analysis, this is not always possible. In the case of parametrisation by

objects, several variable alias analyses exist, that can give partial information on whether two source

code variables can point to the same runtime object (we use [10]). In such cases, we have three possible

outcomes: (i) the two variables always refer to the same object; (ii) the two variables always refer to

different objects; and (iii) neither of the previous two cases can be concluded. In the literature, this

information is typically encapsulated in two relations — a must relation ≡, which relates two event

generators (e.g. method calls) if their objects always (must) match, and a may relation ≡may, which

relates two event generators if their objects may match, with the former relation being a subset of the

latter 5. Thus, with such variables as static object identifiers, when statically we are given a trace of event-

identifier couples, we can extract the possible runtime traces generated by these, through projection

on certain identifiers. This is in contrast to parametrised traces where the behaviour of each object is

perfectly known and thus only one ground trace is generated through projection.

Definition 2.4 (Static Parametrised Traces). A static parametrised trace is a parametrised trace st ∈ Σ
∗
α ,

with two relations over α : (i) a must-alias equivalence relation ≡ ∈ α ↔ α , and (ii) a may-alias relation
≡may ∈α ↔ α , such that ≡ ⊆≡may. We define the projection of a static parametrised trace st with respect
to parameter x, written st ⇓ x, as follows:

〈〉 ⇓ x
def
= {〈〉}

((x′,e) : st) ⇓ x
def
=







{e : es | es ∈ st ⇓ x} if x ≡ x′

st ⇓ x if x 6≡may x′

st ⇓ x∪{e : es | es ∈ st ⇓ x} otherwise

We overload this notation over sets of static parametrised traces: ST ⇓ x
def
=

⋃

st∈ST st ⇓ x; and over sets

of identifiers: ST ⇓ X
def
=

⋃

x∈X ST ⇓ x.

Trace st is said to satisfy property automaton π , written st � π , if for each identifier x ∈ α the

projection of st onto x satisfies the property: st � π
def
= ∀x ∈ α · st ⇓ x ⊢ π .

It is worth noting that although we are only considering parametrisation over a single identifier (e.g.

to an object), a property can be parametrized over multiple objects. The work presented here applies to

that case, by abstracting tuples of identifiers into a single identifier, with point-wise must and may-alias

relations.

We now turn our view from individual traces to the programs which generate them.

Definition 2.5 (Programs). For a program P over an alphabet Σ with a set of runtime objects Obj and

static object identifiers ObjId, (i) we will write PR
Σ

to denote the set of parametrised traces over Obj i.e.

PR
Σ
⊆ Σ

∗
Obj with equivalence ≡ over Obj; (ii) we will write PS

Σ
to denote the set of static parametrised

traces over ObjId i.e. PS
Σ
⊆ Σ

∗
ObjId with relations ≡ and ≡may.

In what follows, we assume that the static parametrised trace generator is an over-approximation of

the parametrised trace generator: PR
Σ
↓ Obj ⊆ PS

Σ
⇓ ObjId.

In our effort to reduce overheads by reducing a property, we will need to ensure that monitoring the

program by the created residual is enough, i.e. both the original property and the residual give the same

verdict for any given program trace, although their results may vary for other traces.

5Other analyses would be applicable in the case of parametrization by data instead of objects, and when this is not possible

all identifiers can be related by the may relation soundly
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Definition 2.6 (Equivalence). Two properties π and π ′ are said to be equivalent with respect to a set of

ground traces T , written π ∼=T π ′, if every trace in T is judged the same by either property: ∀t ∈ T · t ⊢
π ⇐⇒ t ⊢ π ′. This is lifted to parametrised and static parametrised traces, and sets thereof.

It is straightforward to prove that equivalence up to traces is an equivalence relation and is preserved

when reducing the set of traces, from which the next property holds.

Proposition 2.1. If π ∼=T π ′ and π ′ ∼=T ′ π ′′, then π ∼=T∩T ′ π ′′.

We can also show that equivalence with respect to the static parametrised trace generator can be

expressed in terms of its projection onto ground traces.

Proposition 2.2. π ∼=PS
Σ

π ′ ⇐⇒ π ∼=PS
Σ
⇓ObjId π ′.

As we have discussed, some parts of the program may be proved safe to unmonitor, upon which

we can silence these parts and transform the static parametrised trace generator by turning off certain

identifier-event pairs.

Definition 2.7. Given a static parametrised trace st, and a set of identifier-event pairs E ∈ 2ObjId×Σ, the

silencing of st by E , written, silence(st, ips), is defined to be the original trace st except for elements in

E:

silence(〈〉,E)
def
= 〈〉

silence((x,e) : st,E)
def
=

{

silence(st,E) if (x,e) ∈ E

(x,e) : silence(st,E) otherwise

We can also define equivalence between a program and its transformation (see [7]), however given

lack of space we focus solely on equivalence between residuals and the original property in this paper,

but define silencing since Clara

Based on the notions presented, we discuss the analysis techniques used in Clara [11], where each

of its analyses reduces the points in a program that activate the monitor at runtime. The only inputs

Clara needs is the source code of the program (which is then analysed using Soot [19]) and a property

automaton. The basic thesis of Clara is then that appropriate silencing of certain events, does not affect

satisfiability of the program with respect to the property but reduces the length of the traces to be analysed:

Given a static parametrised program P=PS
Σ

and property π , the reduced program approximation obtained

through Clara, P′ = Clara(PS
Σ
,π), is sound with respect to π: P ∼=π P′.

Clara uses three analysis techniques to reduce the program approximation [11]:

Quick Check. Some events specified by the property may not correspond to any method invocations

by the program, e.g. consider that given Figure 1, a program may only open streams and write to them,

but never read from them. Also, some events may only appear on loops in the same state, and therefore

never cause a change in state (e.g. lookAhead). Clara’s first analysis can be used to remove these kinds

of events from the property, and the corresponding transitions. This may lead to some states becoming

unreachable from the initial state, or states that cannot reach a bad state, and thus these can also be

removed. If a bad state cannot be reached from an initial state, then the property is satisfied.

Orphan Shadows Analysis. The first analysis ignores the fact that events are parametrised. Consider a

program where only open and lookAhead are ever called on one object, then by looking at the property

we can note that this object can never violate it (by performing the first analysis on this object, instead

of on the whole program), therefore both method calls can be silenced. This can then produce, for each

object, a set of such instrumentation points that can be disabled without affecting the result of monitoring.

Flow-Sensitive Nop-Shadows Analysis. The first two analyses do not take into account any of the

control-flow of the program, they just consider which methods are invoked or not but not in which order.
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q1startstart q2 q3 q4 q5

s1.write, s2.open s1.write, s2.opens1.write, s2.open

ε

s3.open s4.close s5.open s8.close

Figure 2: Example method CFG generalized to whole-method CFG.

This can be taken into account by considering a control-flow graph (CFG) of a program, which represents

a superset of its event-triggering behaviour, and silence any statements that, if present or not, do not affect

violation.

Through several over-approximations of a whole-program CFG and synchronous composition of

these with the property, Bodden et al. identify sequences of instrumentation points that only ever transi-

tion from and to the same state (taking into account parametrisation of the property), with no bad states in

between. Such points (which Bodden et al. call nop shadows) never have an effect on violation, meaning

they can be silenced, reducing the amount of times the monitor is triggered at runtime.

As an example, consider the synchronous composition of the property in Figure 1 and the approx-

imated CFG in Figure 2, and assume that all the object identifiers (si) associated with an event always

refer to the same event. One can then note that after q1, the synchronous composition is either in qa or

qc; then taking q1

s3.open
−−−−→ q2 will lead to qb, and then q2

s4.close
−−−−→ q3

s5.open
−−−−→ q4 will necessarily lead to qb.

Since, then, these two transitions do not affect the control-flow, they can be disabled such that they do not

activate the monitor at runtime. Note the loops at state q4 represent the flattened behaviour of a method

called at that state, while those at q1 and q5, the behaviour outside the method.

3 Control-Flow Residual Analysis of DATEs

The properties considered by Clara are automata with explicit state. However, some properties require

a richer specification language — an extension to automata to deal with more expressive properties,

are DATEs [12]. One way in which DATEs extend finite state automata is through the introduction of a

symbolic state which can be checked and updated on transitions which trigger on events, with conditional

guards, and perform side-effect actions affecting the symbolic monitoring state.6

Consider the DATE shown in Figure 3. Transitions are labelled by a triple e | c 7→ a — when event e

occurs and if condition c holds, the transition is taken, executing action a7. For instance, the top transition

between states q0 and q1 triggers when a user is whitelisted and the monitoring variable transferCount is

at least 3, and if taken resets this variable. Applying Clara’s first analysis to this property by ignoring the

conditions and actions would result in removing the transfer transition in state q1 since upon a transfer

the monitor would never change states. Clearly, taking this transition could have an effect on which future

transitions are activated. For similar reasons, Clara’s third analysis may disable transitions unsoundly.

3.1 Preliminaries

We start by identifying what we mean by a DATE in this paper, and continue exploring some notions and

results we will need to present our residual analysis.

6DATEs also include other extensions which we do not deal with in this paper, such as timers and communication channels.

For full semantics of DATEs, refer to [12, 2].
7We leave out the bar and arrow when the condition is true or the action is skip (the identity action).
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Initial Variable State: transferCount = 0;

q0For Each: User u q1 q3

q4q5q2

greyList(u)

whiteList(u) 7→ transferCount = 0

transfer(u)

7→ transferCount++

whiteList(u) | transferCount ≥ 3

7→ transferCount = 0;
whiteList(u)

| transferCount < 3;

permanentlyDisabled(u)permanentlyDisabled(u)

∗∗

Figure 3: Example DATE specifying that once a user is greylisted they can only be whitelisted after performing

three or more transfers.

Definition 3.1. A DATE D is a tuple 〈Q,Σ,Θ,q0,θ0,B,δ 〉, where Q is the set of states, Σ is an alphabet

of events, Θ is the type of monitoring variable states, q0 ∈ Q is the initial state, θ0 : Θ is the initial

monitoring variable state, B ⊆ Q is a set of bad states, and δ ⊆ Q×Σ×C×A×Q is a transition relation

with conditions (C = Θ → B) and actions (A = Θ → Θ). We write q
e|c7→a
−−−→ q′ for (q,e,c,a,q′) ∈ δ , skip

for the identity action, and denote the type of DATEs by D.

Property automata as defined in Section 2 can be seen as instances of DATEs with a transition q
e
−→

q′ being translated into q
e|true 7→ skip
−−−−−−−→ q′. In our experience with DATEs, the number of states used is

typically rather small, and while the symbolic state can be unbounded (e.g. includes lists), in practice

such usage is rare and is usually delegated to a database.

We assume determinism of the transitions: from each state, transitions with the same events have

mutually exclusive conditions, with regards to any monitoring variable state. Thanks to this assumption,

we can use the transition function in an applicative manner.

Definition 3.2. The concrete transition function of a DATE δ ∈ (Q×Θ)×Σ → Q×Θ is defined over
the DATE and monitoring variable state:

δ ((q,θ ),e)
def
=

{

(q′,a(θ )) if q
e|c7→a
−−−→ q′∧ c(θ )

(q,θ ) otherwise

We will write δ ∗ to denote the transitive closure of δ .

This definition makes the DATEs semantics implicitly total with regards to events and conditions,

since if there is no transition for a certain event we remain at the same state.

Transitioning thus depends on the symbolic state, which we could approximate statically through

some kind of code or predicate analysis. However here we shall take the maximal over-approximation, by

always considering that a transition’s condition may both be true or false. More precise approximations

can be relatively more expensive to compute than than this, which is why we made the decision to focus

solely on control-flow analysis, leaving the use of predicate analysis for future work. This means that we

must consider transitioning into multiple states, which we cater for in the following definition.

Definition 3.3. Given states q,q′ ∈ Q and event e ∈ Σ, we say that q potentially goes to q′ with event e,

written q
e
−→approx q′, if a transition with event e and a condition that can be satisfied, or q′ is q and there

is no outgoing transition out of it that must be taken on e being triggered:

q
e
−→approx q′

def
= (q

e|c7→a
−−−→ q′∧ c 6= false)∨ (q = q′∧ 6 ∃q′′ ·q′′ 6= q∧q

e|true7→a
−−−−−→ q′′)

Given a DATE, the static transition function ∆D ∈ 2Q ×Σ → 2Q is defined to be the function which,

given a set of states and an event, returns the set of states potentially reachable from any of the input

states: ∆D(S,e)
def
= {q′ | ∃q ∈ S ·q

e
−→approx q′}.
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We use ∆∗
D ∈ 2Q ×Σ∗ → 2Q to denote its transitive closure . Finally, we use q →֒D q′ to denote that

q′ is reachable from q with the static transition relation: q →֒D q′
def
= ∃t ·q′ ∈ ∆∗

D({q}, t).

We can prove that given a state and a ground trace, then the state reached by δ ∗ is also possibly reached

(with ∆∗) from that state, with that trace, i.e. ∆∗ over-approximates δ ∗.

Theorem 3.1. ∀θ : Θ, t : Σ∗
,q ∈ Q · ∃θ ′ : Θ ·δ ∗((q,θ ′), t) = (q′,θ ) =⇒ q′ ∈ ∆∗({q}, t).

As we did for property automata, we define what it means for a DATE to satisfy the different kinds

of traces using this static approximation of transitioning at runtime, and relate it to the static transition

function.

Definition 3.4. A ground trace t ∈ Σ∗ is said to satisfy a DATE D (with Σ ⊆ ΣD), if none of its prefixes

applied to the transitive closure of D, starting from the initial state of D and the initial monitoring variable

state, lead to a bad state of D: t ⊢ D
def
= ∀t ′ ∈ prefixes(t) ·δ ∗((q0,θ0), t

′) = (q,θ)∧q 6∈ BD.

We define the satisfaction of a parametrised trace and a statically parametrised trace as before with

respect to a DATE and over this ground trace satisfaction operator, and similarly for the equivalence

relations between DATEs.

Base on the previous theorem, we can show satisfaction of a trace by considering whether any of its

prefixes possibly lead to a bad state.

Theorem 3.2. If the static transition function applied to any prefix of t from the start state of D does not

contain a bad state, then t satisfies D: (0∀t ∈ Σ∗ · ∀t ′ ∈ prefixes(t) ·∆({q0}, t)∩BD 6= /0) =⇒ t ⊢ D.

Moving on to creating residuals, from Figure 3 we can see that not all states are useful: consider

how being at q2, q4 and q5 implies that one can no longer violate the property. q5 can however only be

reached through q2 or q4 where the monitor verdict is clear, and thus q5 is useless. Thus we should keep

states q2 and q4 (since before reaching them we do not know the verdict of the trace), but we do not need

q5 (since satisfaction is clear). We then classify a state as useful if: (1) it is reachable from the initial

state, and it can reach a bad state (q1), or (2) it is reachable by one step from a state of the first kind (q2

and q4).

Definition 3.5. A state q in DATE D is said to possibly lead to a violation in D, written badAfter(q), if it is

reachable from the initial state and a bad state is reachable from it: badAfter(q)
def
= q0 →֒ q∧∃q′ ∈ B ·q →֒ q′.

A state q in DATE D is said to be an entry-point to a satisfied region in D, written goodEntryPoint(q),
if it cannot possibly lead to a violation and is one transition away from such a state that can possibly lead

to a violation: goodEntryPoint(q)
def
= ¬badAfter(q)∧∃q′ ·q′

e
−→approx q∧badAfter(q′).

A state q in DATE D is said to be useful in D, written useful(q), if it can possibly lead to a violation

or is an entry-point to a satisfied region in D: useful(q)
def
= badAfter(q)∨goodEntryPoint(q). Given a DATE

D, it can be reduced to the reachable useful states to obtain R(D) which contains only states in D which

are useful, and the transitions between them: δR(D)
def
= {(q,e,c,a,q′) ∈ δ | useful(q)∧useful(q′)}.

We can then show that a DATE reduced for reachability is equivalent to the original DATE with

respect to an approximation of a program, by using the theorems and propositions presented in the

previous sections, which we claim also apply to DATEs by simply using the DATE satisfaction operators.

Theorem 3.3. A DATE D is equivalent to its reachability-reduced counterpart R(D) (with alphabet Σ),

with respect to any set of traces: ∀T ⊆ Σ∗ ·D ∼=T R(D).
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3.2 Residual Analysis

We are concerned with producing residuals of a DATE [6] with respect to some known information about

the program — the part of the property which cannot be proved from what we know about the program.

Recall that previously we informally characterized a residual D′ of a DATE D, given a static program

PS
Σ

over that same alphabet, by one property: the intersection of the program intersected with that of

property and separately with the residual are equal: where L(D) is the set of bad traces accepted by D,

L(D′)∩ (PS
Σ
⇓ ObjId) = L(D)∩ (PS

Σ
⇓ ObjId). This is equivalent to our notion of equivalence: D′ ∼=PS

Σ

D.

Note that the reachability-reduction just defined is a residual for all programs.

In this section, we start by presenting a number of definitions and results which we shall use to extend

the analysis used in Clara to create DATE residuals.

One of the ways we shall be creating residuals is by restricting the alphabet of a DATE, the result of

which is equivalent to the original DATE, with respect to some kind of traces.

Theorem 3.4. A DATE D with alphabet Σ and its alphabet-restriction by some alphabet Σ′ ⊆ Σ are

equivalent with respect to a set of ground traces T ⊆ Σ∗: D ↾ Σ(T )∼=T D

Since we are looking at parametrised traces, different objects in a program activate different instances

of the monitor. These objects may have different behaviour and thus they may use different subsets of

the DATE alphabet. We will thus, in the next section, consider the residuals of a DATE with respect

to different objects, however each of these residuals individually is not enough to monitor the whole

program soundly with. We define a union operator over DATEs to allow this.

To ensure that the combination of DATEs (D and D′) remains a DATE we require that they start from

the same initial state and monitoring state, and that a DATE exists that captures both of their behaviour:

∃D′′ : D ·QD ∪QD′ ⊆ QD′′ ∧ΣD ∪ΣD′ ⊆ ΣD′′ ∧BD ∪BD′ ⊆ BD′′ ∧δD ∪δD′ ⊆ δD′′ , i.e. D and D′ are said to

be component-wise subsets of D′′.

Definition 3.6. Given two DATES that are component-wise subsets of another DATE8, their component-

wise union is defined as the property with both of their transitions, states and bad states, and starting

from the same initial state: D⊔D′ def
= {QD ∪QD′ ,ΣD ∪ΣD′ ,q0,θ0,BD ∪BD′ ,δD ∪δD′}

We shall be producing residuals of a DATE by using the alphabet-restriction, then the reachability-

reduction, and then performing the union on all these residuals. The next theorem shows that this union

preserves the behaviour of the single reduced DATEs.

Theorem 3.5. Given sets of traces T0,T1 ⊆ Σ∗, and DATE D, the union of D’s alphabet-restriction with

respect to each of the sets of traces is equivalent to D with respect to the union of the sets of traces:

R(D ↾ Σ(T0))⊔R(D ↾ Σ(T1))∼=T0∪T1
D.

We can now move on to presenting our constructions of residuals.

3.3 Residual Constructions

We start by formally describing analyses which both prune the property by removing transitions and

states that are irrelevant for the program’s violation, and silence statements that the analysis concludes

will not affect violation. We present three residuals, one without the events used by the program, another

taking into account whether events can occur on the same object, and the last one removing from the

DATE transitions that can never be used by a trace in the program. Theoretically, using the last analysis

8This ensures that the union, as defined here, is in turn merely the bigger DATE without some states and/or transitions,

which is still a DATE, since determinism is preserved.
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is enough, since each analysis is finer than the other, however in practice one may want to first use

the other analyses since they are cheaper to compute. We prove that each of these is equivalent to the

original DATE with respect to the given program. The last two analyses also provide the opportunity of

identifying statements in the program that can be silenced safely.

3.3.1 Absent event pruning

Recall that Clara’s first analysis computes the symbols that should be monitored, thus excluding: (i)

events that appeared only on transitions looping in the same state, (ii) symbols that do not appear in

the program, and (iii) symbols only outgoing from states from which a bad state is not reachable in the

property reduced by the previous types of symbols. We now consider these in the case of DATEs.

We cannot remove transitions such as in (i) since such idempotent transitions may perform actions

which affect the triggering of other transitions (consider the looping transition on state q3 in Figure 3).

Those of type (ii) can be removed safely, since if a certain symbol does not appear in the program,

then clearly transitions tagged by such symbols in the property will never be taken and can be removed.

While our reachability-reduction already takes care of events of type (iii)9. We thus define residual0 over

a property D, with respect to a program PS
Σ

: residual0(D)
def
= R(D ↾ Σ(PS

Σ
)).

Based on Thm. 3.3, Thm. 3.4, and Prop. 2.2, we can show that this is equivalent to the original

DATE with respect to the used program.

Theorem 3.6. The residual0 of a DATE D is equivalent to D, with respect to program approximation PS
Σ

(with Σ ⊆ Σresidual0(D)): residual0(D)∼=PS
Σ

D

3.3.2 Object-specific absent event pruning

Like Clara, we can generalise the first analysis to consider events occurring on objects. Given an object, if

the traces corresponding to it do not use the full alphabet of the DATE, then we can create a residual that is

enough to monitor just that object soundly. Consider Figure 3, if we have an object that we know is never

greylisted but performs transfers then we can keep only the transitions triggered upon a transfer. Based on

the results given in Thm. 3.3 and Thm. 3.4, we define this as: residual1(D,objId)
def
= R(D ↾ Σ(PS

Σ
⇓ objId)).

Proposition 3.1. The residual1, for an identifier objId, is equivalent to the original DATE D with respect

to the traces of objId in the program PS
Σ

: residual1(D,objId)∼=PS
Σ
⇓objId D.

For runtime monitoring we now have two choices: (1) create a different monitor for each object

identifier, corresponding to the associated residual, such that the monitor only instruments the statements

associated with the identifier; (2) perform the union on all the residual DATEs and instrument the program

as usual (i.e. by simply matching the DATE events with statements). The former would require new

instrumentation techniques that employ static aliasing knowledge, while with the latter one could use

existing techniques. Using Prop. 3.1, Prop. 3.5 and Prop. 2.2, we can show that the resulting DATE in

the second choice is still equivalent to the original one, with respect to the program.

Theorem 3.7. Given the residual for each identifier, then their union is equivalent to the original DATE,

with the program approximation:
⊔

objId∈ObjId residual1(D,objId)∼=PS
Σ

D.

Consider again an object that only performs transfers. With respect to this, Figure 3 would be reduced

to just the initial state using the second residual, and thus we can statically conclude that the object

satisfies the property. In this manner, we no longer need to monitor this particular object when it performs

9Note that this would not be always safe if we were considering multiple DATEs executing at the same time.
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a transfer, and thus any transfers associated solely with it can be silenced. Using an object-specific

residual, we can then reduce the traces in the static program by removing identifier-events pairs, where

the event does not appear in the identifier’s residual: noEffect((objId,e),D)
def
= e 6∈ Σresiduali(D,objId).

A static program without such pairs will remain equivalent to the original static program, with respect

to that residual (i.e. corresponding traces in the respective programs will maintain the same verdict with

respect to the residual)10.

3.3.3 Unusable transition pruning

In the previous two analyses we have ignored the flow of events, in fact we consider only the alphabet of

the program and DATE. Our novel third analysis, however, makes use of the control-flow, by considering

the possible traces of a program.

Consider Figure 3, and the trace whitelist;greylist; transfern as the program (over a single object).

Given the previous two analyses, only transitions between states q0, q1 and q3 would remain. However,

the whitelist transitions from q1 can never be activated since the trace only performs whitelist before the

user is greylisted. Thus we can remove these transitions. We define what it means for a trace to use a

transition.

Definition 3.7. A trace is said to use a transition from q to q′ with an event e, in a DATE D, if the

transitions condition is not false, and a strict prefix of the trace can potentially go to q and the head of

the remaining suffix is e: uses(t,q
e|c7→a
−−−→ q′)

def
= c 6= false∧∃t ′++ 〈e〉 ∈ prefixes(t) ·q ∈ ∆∗

D({q0}, t
′)

In general, given a trace, this does not always trigger all the transitions in a DATE, in fact we can

prune away the unused transitions and the residual DATE will remain equivalent to the original one with

respect to that trace. We can generalise this notion by removing transitions that cannot be used by any of

the traces: residualP2 (D,PS
Σ
)

def
= R(D ↾ {d ∈ δ | ∃t : PS

Σ
⇓ ObjId ·uses(t,d)}).11

Theorem 3.8. The residual2 is equivalent to the original DATE: residual2(D,PS
Σ
)∼=PS

Σ

D

Previously we discussed informally that multiple CFGs that approximate the program’s behaviour
can be created, meaning we may have multiple over-approximations of a program, we can thus apply
the residual2 on each of these successively, creating a possibly finer residual than we can with one over-
approximation.

residual2(D,〈〉)
def
= D

residual2(D,PS
Σ

: Ps)
def
= residual2(residual2(D,PS

Σ
),Ps)

Theorem 3.9. Given a set of static program over-approximations, then applying the third residual con-

struction, consecutively, returns one which is equivalent to the original with respect to the intersection of

projection into ground traces of each approximation: residual2(D,Ps)∼=⋂

0<i<length(Ps) Ps(i)⇓ObjIdi
D12

Clara’s third analysis silenced statements in the program that together do not have any effect on

the flow with respect to the property. However, given conditions on transitions in DATEs, we do not

necessarily know if a transition will be activated or not. Hence, the static transition of a DATE ranges

10See [7] for a full formalisation of what this means, and a proof for that statement, which we have omitted from here, given

lack of space.

11Note that we can also define this for singular objects, residualP2 (D,PS
Σ
,objId)

def
=R(D ↾ {d ∈ δ | ∃t : PS

Σ
⇓ objId ·uses(t,d)})

and perform the same noEffect analysis as with the previous residual.
12This is significant because the ground traces generated by static programs are always a subset of that generated by the

runtime program, ensuring that the intersection of the statically generated traces here is a subset of those at runtime.
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over a set of states, considering both possibilities of a transition being taken or not. Using the same

principle, we can apply Clara’s third analysis to method invocations that only trigger DATE transitions

without conditions (or rather with the true condition), and that do not have actions with side-effects.

However, we do not detail this here given space constraints.

4 Case Study

q0
Bronze

UserInfo
q1 q2

createdUser activate

activate

blacklist,greylist,whitelist

τ

q0
{Gold/Silver}

UserInfo
q1 q3

q4

q5
createdUser activate

activate

blacklist

whitelist
pay

τ

Figure 4: CFG lifted with respect to aliasing of each sub-type of UserInfo, with respect to the property in Figure 5.

These analysis techniques presented in this paper have been implemented in a tool13. It is worth

noting that due to the differences in the analysis techniques, our tool does not build directly on Clara,

although it uses the Soot [19] tool for Java program analysis. The tool was evaluated them on a simple

financial transaction system with users connecting to a proxy in order to enable communication with

a transaction server inspired by the industrial systems we have previously used runtime verification on

[8]. The proxy and the transaction server can be two different services (the client and provider), possibly

provided by different providers, with the property specifying the behaviour that the transaction server

expects out of the proxy.

In order to see how our approach scales with increased system load and monitoring overhead, the

system was evaluated with different numbers of users behaving in a controlled random manner, thus

allowing for repeatability of the experiment. The static analysis was performed three times: (1) with

the original property to produce the program monitored by the first residual; (2) with the first residual

to produce the program monitored by the second residual property, with some method calls silenced

according to the instrumentation point analysis previously defined; and (3) with the second residual to

produce the program monitored by the third residual. This is a one-time pre-deployment cost, and it was

found to take just a few seconds.

The system was verified with respect to a specification constraining payment patterns based on the

status of the user, e.g. a blacklisted user can only perform a payment if it has not exceeded a certain risk

threshold. The risk level of a user is calculated by the monitor by checking that the companies the users

deal with in general have transacted with users in good standing (i.e. that are not currently blacklisted

or greylisted), with the number of such users in bad standing having an effect on the risk level of the

user in question14 . This part of the specification is shown in Figure 5, while Figure 4 illustrates the

property-relevant behaviour of each possible user object, representing the system under analysis.

The memory used and execution time of the unmonitored program was compared to that of the moni-

tored one, and to that of optimised monitors with the three analyses applied cumulatively. The experiment

was run for different numbers of users, with three sample executions used to normalise differences be-

tween measurements. Given that the monitors used in the experiment do not have state to keep track

13The tool can be downloaded from https://github.com/shaunazzopardi/clarva.
14Note that caching such a calculation does not aid the monitor performance since the risk level changes with each transaction

— also those not involving the user in question.
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qaFor each: UserInfo u qb

qc

qd

qe q f

qg qh

createdUser(u)

activate(u,success)

| success

pay(u)

blacklist(u)

| risk(u) > 0.5

blacklist(u)

| risk(u) ≤ 0.5

pay(u)

transfer(u)

whitelist(u)

whitelist(u)
pay(u,dest)

| ¬dest.whitelisted

transfer(u)

blacklist(u)

| risk(u) > 0.5

blacklist(u)

| risk(u) ≤ 0.5

Figure 5: Property, with dashed transitions removed by the first analysis, and dotted by the third.
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Figure 6: Table and plot of the experiment results.

of, no measurable memory overheads were found any of the experiment runs. However, as expected,

monitoring induced considerable processing overheads (see Figure 6), which were substantially reduced

using our optimisations from an average of 97% to just 4%.

The first analysis took roughly the same time as the monitored time, since it only removed transi-

tions that could never be taken, resulting in the monitoring engine only bypassing a conditional check

for the never-activated event (since transfer does not appear in Figure 4). The second analysis did not

reduce the property itself, but turned off monitoring of all statements in the program associated only

with bronze users, avoiding monitors being created at runtime which are never violated (consider that

in Figure 4 bronze users cannot effect payments). The third analysis identified that blacklisted users are

never allowed to affect a payment by the application (i.e. the program never makes it to q f and qh in

Figure 5, consider the parallel composition of the CFGs and the property) and thus simply made sure

that non-activated users do not affect payments (i.e. once a user was created, the monitor transitioned to

qb and checked every incoming event against the only remaining outgoing transitions to qc and qd). This

resulted in an insignificant level of overheads, given the monitoring engine only had to check against two

transitions (while in state qc), without any expensive conditions to check and no tight-looping.

Similar to the results from [11], the gains arise since the system does not necessarily use all the events

appearing in the property and some of the correctness logic is encoded directly in the control-flow of the

system. In our client-provider scenario: (i) the client does not make use of all the functions the provider

allows (at least not for every possible object); and (ii) the client is coded in such a way that allows

reasoning about its control-flow e.g. blacklisting a user directly by setting a flag. In practice, we envisage

that this approach is applicable, for instance, when encoding properties over APIs or constraining server-

access, allowing for monitoring overhead reduction for API clients or clients accessing the server.
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5 Related Work

Our work builds directly on the results of Bodden et al. [11], but there are many other instances of the

use of static analysis in order to optimise dynamic analysis. In [6], we previously presented a high-level

theory of residuals, and a model-based approach to combining static and dynamic analysis, and gave

informal examples of how residuals of DATEs could be computed. In this paper we present formally this

intuition.

Dwyer et al. [13] take a different approach from ours or Clara’s, wherein they identify safe regions

in a program, i.e. sequences of statements that cannot violate a property, and if they are deterministic

with respect to a property (if the monitor enters the region at a state q then it always exists at the same

state q′). The effect of the region on the monitor is then replaced by a new unique event e, and the

property augmented by a transition from q to q′ with e. Note, that this summarises the effect of some

instrumentation into one, wherein we simply remove instrumentation that does not affect violation. Jin

et al. [14] also investigate parametric properties, and investigate optimisations which can be made to the

implementation of monitoring logics at runtime, namely more efficient garbage collection of monitors

associated with an object that has been garbage collected. It is worth noting how our second analysis

may prevent some of this behaviour by detecting statically that an object may never violate and instead

prevent the creation of its monitor. Other approaches try to make runtime overheads more predictable

and manageable, but lose certainty of the verdict. [18] is an example of event sampling, where not all

events generated by a program are processed by the program, where this approach uses a statistical model

to approximate the gaps in the execution trace. [9] extends this approach to reduce the memory and time

overheads incurred by statistical calculations performed at runtime, by estimating them statically.

6 Conclusions and Future Work

Through this work, we have extended a static optimisation for the monitoring of parametric properties,

to deal with automata with symbolic state. We reduce both the property using the system, and the system

instrumentation by using the property. This static analysis is based on the control-flow of the program,

and an aliasing relationship between relevant objects of the program, which we illustrated through a case

study emulating a payment transaction system. These residual analyses have been implemented in a tool

which we are currently preparing to make publicly available, this tool can be used to pre-process DATEs

before they are used to monitor a program. We are in the process of combining these results with those

of StaRVOOrS [3], where in contrast to our approach, StaRVOOrS, static analysis is used to reduce the

data-flow aspect of the specification (using pre- and post-conditions), leaving the control-flow aspect (in

the form of DATEs) for dynamic analysis. Our work is complementary to this approach, and in fact we

are currently investigating how to optimise properties using both control and data flow static analysis.
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