1,318 research outputs found

    Identifying reusable functions in code using specification driven techniques

    Get PDF
    The work described in this thesis addresses the field of software reuse. Software reuse is widely considered as a way to increase the productivity and improve the quality and reliability of new software systems. Identifying, extracting and reengineering software. components which implement abstractions within existing systems is a promising cost-effective way to create reusable assets. Such a process is referred to as reuse reengineering. A reference paradigm has been defined within the RE(^2) project which decomposes a reuse reengineering process in five sequential phases. In particular, the first phase of the reference paradigm, called Candidature phase, is concerned with the analysis of source code for the identification of software components implementing abstractions and which are therefore candidate to be reused. Different candidature criteria exist for the identification of reuse-candidate software components. They can be classified in structural methods (based on structural properties of the software) and specification driven methods (that search for software components implementing a given specification).In this thesis a new specification driven candidature criterion for the identification and the extraction of code fragments implementing functional abstractions is presented. The method is driven by a formal specification of the function to be isolated (given in terms of a precondition and a post condition) and is based on the theoretical frameworks of program slicing and symbolic execution. Symbolic execution and theorem proving techniques are used to map the specification of the functional abstractions onto a slicing criterion. Once the slicing criterion has been identified the slice is isolated using algorithms based on dependence graphs. The method has been specialised for programs written in the C language. Both symbolic execution and program slicing are performed by exploiting the Combined C Graph (CCG), a fine-grained dependence based program representation that can be used for several software maintenance tasks

    ConSIT: A conditioned program slicer

    Get PDF
    Conditioned slicing is a powerful generalisation of static and dynamic slicing which has applications to many problems in software maintenance and evolution, including reuse, reengineering and program comprehension. However there has been relatively little work on the implementation of conditioned slicing. Algorithms for implementing conditioned slicing necessarily involve reasoning about the values of program predicates in certain sets of states derived from the conditioned slicing criterion, making implementation particularly demanding. The paper introduces ConSIT, a conditioned slicing system which is based upon conventional static slicing, symbolic execution and theorem proving. ConSIT is the first fully automated implementation of conditioned slicing. An implementation of ConSIT is available for experimentation at &http://www.mcs.gold.ac.uk/tilde/~mas01sd/consit.htm

    A method for re-modularising legacy code

    Get PDF
    This thesis proposes a method for the re-modularisation of legacy COBOL. Legacy code often performs a number of functions that if split, would improve software maintainability. For instance, program comprehension would benefit from a reduction in the size of the code modules. The method aims to identify potential reuse candidates from the functions re-modularised, and to ensure clear interfaces are present between the new modules. Furthermore, functionality is often replicated across applications and so the re-modularisation process can also seek to reduce commonality and hence the overall amount of a company's code requiring maintenance. A 10 step method is devised which assembles a number of new and existing techniques into an approach suitable for use by staff not having significant reengineering experience. Three main approaches are used throughout the method; that is the analysis of the PERFORM structure, the analysis of the data, and the use of graphical representations. Both top-down and bottom-up strategies to program comprehension are incorporated within the method as are automatable, and user controlled processes to reuse candidate selection. Three industrial case studies are used to demonstrate and evaluate the method. The case studies range in size to gain an indication of the scalability of the method. The case studies are used to evaluate the method on a step by step basis; both strong points and deficiencies are identified, as well as potential solutions to the deficiencies. A review is also presented to assesses the three main approaches of the methods; the analysis of the PERFORM and data structures, and the use of graphical representations. The review uses the process of software evolution for its evaluation using successive versions of COBOL software. The method is retrospectively applied to the earliest version and the known changes identified from the following versions are used to evaluate the re-modularisations. Within the evaluation chapters a new link within the dominance tree is proposed as is an approach for dealing with multiple dominance trees. The results show that «ach approach provides an important contribution to the method as well as giving a useful insight (in the form of graphical representations) of the process of software evolution

    Safe integration of annotated components in open source projects

    Get PDF
    The decision of using existing software components versus building from scratch custom software is one of the most complex and important choices of the entire development/integration process. However, the reuse of software components raises a spectrum of issues, from requirements negotiation to product selection and integration. The correct tradeoff is reached after having analyzed advantages and issues correlated to the reuse. Despite the reuse failures in real cases, many efforts have been made to make this idea successful. In this context of software reuse in open source projects, we address the problem of reusing annotated components proposing a rigorous approach to assure the quality of the application under construction. We introduce the concept of caller-based slicing as a way of certifying that the integration of a component annotated with a contract into a system will preserve the correct behavior of the former, avoiding malfunctioning after integration. To complement the efforts done and the benefits of slicing techniques, there is also a need to find an efficient way to visualize the main program with the annotated components and the slices. To take full profit of visualization, it is crucial to combine the visualization of the control/data flow with the textual representation of source code. To attain this objective, we extend the notions of System Dependence Graph and Slicing Criterion to cope with annotations.Fundação para a Ciência e a Tecnologia (FCT

    Modellbasiertes Regressionstesten von Varianten und Variantenversionen

    Get PDF
    The quality assurance of software product lines (SPL) achieved via testing is a crucial and challenging activity of SPL engineering. In general, the application of single-software testing techniques for SPL testing is not practical as it leads to the individual testing of a potentially vast number of variants. Testing each variant in isolation further results in redundant testing processes by means of redundant test-case executions due to the shared commonality. Existing techniques for SPL testing cope with those challenges, e.g., by identifying samples of variants to be tested. However, each variant is still tested separately without taking the explicit knowledge about the shared commonality and variability into account to reduce the overall testing effort. Furthermore, due to the increasing longevity of software systems, their development has to face software evolution. Hence, quality assurance has also to be ensured after SPL evolution by testing respective versions of variants. In this thesis, we tackle the challenges of testing redundancy as well as evolution by proposing a framework for model-based regression testing of evolving SPLs. The framework facilitates efficient incremental testing of variants and versions of variants by exploiting the commonality and reuse potential of test artifacts and test results. Our contribution is divided into three parts. First, we propose a test-modeling formalism capturing the variability and version information of evolving SPLs in an integrated fashion. The formalism builds the basis for automatic derivation of reusable test cases and for the application of change impact analysis to guide retest test selection. Second, we introduce two techniques for incremental change impact analysis to identify (1) changing execution dependencies to be retested between subsequently tested variants and versions of variants, and (2) the impact of an evolution step to the variant set in terms of modified, new and unchanged versions of variants. Third, we define a coverage-driven retest test selection based on a new retest coverage criterion that incorporates the results of the change impact analysis. The retest test selection facilitates the reduction of redundantly executed test cases during incremental testing of variants and versions of variants. The framework is prototypically implemented and evaluated by means of three evolving SPLs showing that it achieves a reduction of the overall effort for testing evolving SPLs.Testen ist ein wichtiger Bestandteil der Entwicklung von Softwareproduktlinien (SPL). Aufgrund der potentiell sehr großen Anzahl an Varianten einer SPL ist deren individueller Test im Allgemeinen nicht praktikabel und resultiert zudem in redundanten Testfallausführungen, die durch die Gemeinsamkeiten zwischen Varianten entstehen. Existierende SPL-Testansätze adressieren diese Herausforderungen z.B. durch die Reduktion der Anzahl an zu testenden Varianten. Jedoch wird weiterhin jede Variante unabhängig getestet, ohne dabei das Wissen über Gemeinsamkeiten und Variabilität auszunutzen, um den Testaufwand zu reduzieren. Des Weiteren muss sich die SPL-Entwicklung mit der Evolution von Software auseinandersetzen. Dies birgt weitere Herausforderungen für das SPL-Testen, da nicht nur für Varianten sondern auch für ihre Versionen die Qualität sichergestellt werden muss. In dieser Arbeit stellen wir ein Framework für das modellbasierte Regressionstesten von evolvierenden SPL vor, das die Herausforderungen des redundanten Testens und der Software-Evolution adressiert. Das Framework vereint Testmodellierung, Änderungsauswirkungsanalyse und automatische Testfallselektion, um einen inkrementellen Testprozess zu definieren, der Varianten und Variantenversionen unter Ausnutzung des Wissens über gemeinsame Funktionalität und dem Wiederverwendungspotential von Testartefakten und -resultaten effizient testet. Für die Testmodellierung entwickeln wir einen Ansatz, der Variabilitäts- sowie Versionsinformation von evolvierenden SPL gleichermaßen für die Modellierung einbezieht. Für die Änderungsauswirkungsanalyse definieren wir zwei Techniken, um zum einen Änderungen in Ausführungsabhängigkeiten zwischen zu testenden Varianten und ihren Versionen zu identifizieren und zum anderen die Auswirkungen eines Evolutionsschrittes auf die Variantenmenge zu bestimmen und zu klassifizieren. Für die Testfallselektion schlagen wir ein Abdeckungskriterium vor, das die Resultate der Auswirkungsanalyse einbezieht, um automatisierte Entscheidungen über einen Wiederholungstest von wiederverwendbaren Testfällen durchzuführen. Die abdeckungsgetriebene Testfallselektion ermöglicht somit die Reduktion der redundanten Testfallausführungen während des inkrementellen Testens von Varianten und Variantenversionen. Das Framework ist prototypisch implementiert und anhand von drei evolvierenden SPL evaluiert. Die Resultate zeigen, dass eine Aufwandsreduktion für das Testen evolvierender SPL erreicht wird

    Business rules based legacy system evolution towards service-oriented architecture.

    Get PDF
    Enterprises can be empowered to live up to the potential of becoming dynamic, agile and real-time. Service orientation is emerging from the amalgamation of a number of key business, technology and cultural developments. Three essential trends in particular are coming together to create a new revolutionary breed of enterprise, the service-oriented enterprise (SOE): (1) the continuous performance management of the enterprise; (2) the emergence of business process management; and (3) advances in the standards-based service-oriented infrastructures. This thesis focuses on this emerging three-layered architecture that builds on a service-oriented architecture framework, with a process layer that brings technology and business together, and a corporate performance layer that continually monitors and improves the performance indicators of global enterprises provides a novel framework for the business context in which to apply the important technical idea of service orientation and moves it from being an interesting tool for engineers to a vehicle for business managers to fundamentally improve their businesses

    Incremental UML for Agile development: embedding UML class models in source code

    Full text link
    Agile methods favor "working software over comprehensive documentation." The latter presumably includes Unified Modeling Language. UML is expensive to maintain, and it lacks good drill-down mechanisms, however, UML affords very useful visualizations. This paper describes a discipline for incrementally embedding graphical UML class models within source code for continuous agile development. The approach consists of identifying a main function, and having it drive the piece-wise creation of UML by explicitly including in its postconditions the placement of functions corresponding directly to requirements. The approach thus introduces higher order pre-and postconditions. A specific process is provided for carrying this out, together with examples. It enables UML class model visualization in rapid development, especially when tool-supported

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    PROGRAM SLICING TECHNIQUES AND ITS APPLICATIONS

    Get PDF
    Program understanding is an important aspect in Software Maintenance and Reengineering. Understanding the program is related to execution behaviour and relationship of variable involved in the program. The task of finding all statements in a program that directly or indirectly influence the value for an occurrence of a variable gives the set of statements that can affect the value of a variable at some point in a program is called a program slice. Program slicing is a technique for extracting parts of computer programs by tracing the programs’ control and data flow related to some data item. This technique is applicable in various areas such as debugging, program comprehension and understanding, program integration, cohesion measurement, re-engineering, maintenance, testing where it is useful to be able to focus on relevant parts of large programs. This paper focuses on the various slicing techniques (not limited to) like static slicing, quasi static slicing, dynamic slicing and conditional slicing. This paper also includes various methods in performing the slicing like forward slicing, backward slicing, syntactic slicing and semantic slicing. The slicing of a program is carried out using Java which is a object oriented programming language
    • …
    corecore