4,102 research outputs found

    Bayesian Neural Architecture Search using A Training-Free Performance Metric

    Get PDF
    Recurrent neural networks (RNNs) are a powerful approach for time series prediction. However, their performance is strongly affected by their architecture and hyperparameter settings. The architecture optimization of RNNs is a time-consuming task, where the search space is typically a mixture of real, integer and categorical values. To allow for shrinking and expanding the size of the network, the representation of architectures often has a variable length. In this paper, we propose to tackle the architecture optimization problem with a variant of the Bayesian Optimization (BO) algorithm. To reduce the evaluation time of candidate architectures the Mean Absolute Error Random Sampling (MRS), a training-free method to estimate the network performance, is adopted as the objective function for BO. Also, we propose three fixed-length encoding schemes to cope with the variable-length architecture representation. The result is a new perspective on accurate and efficient design of RNNs, that we validate on three problems. Our findings show that 1) the BO algorithm can explore different network architectures using the proposed encoding schemes and successfully designs well-performing architectures, and 2) the optimization time is significantly reduced by using MRS, without compromising the performance as compared to the architectures obtained from the actual training procedure

    Computational Optimizations for Machine Learning

    Get PDF
    The present book contains the 10 articles finally accepted for publication in the Special Issue “Computational Optimizations for Machine Learning” of the MDPI journal Mathematics, which cover a wide range of topics connected to the theory and applications of machine learning, neural networks and artificial intelligence. These topics include, among others, various types of machine learning classes, such as supervised, unsupervised and reinforcement learning, deep neural networks, convolutional neural networks, GANs, decision trees, linear regression, SVM, K-means clustering, Q-learning, temporal difference, deep adversarial networks and more. It is hoped that the book will be interesting and useful to those developing mathematical algorithms and applications in the domain of artificial intelligence and machine learning as well as for those having the appropriate mathematical background and willing to become familiar with recent advances of machine learning computational optimization mathematics, which has nowadays permeated into almost all sectors of human life and activity

    Model Predictive Evolutionary Temperature Control via Neural-Network-Based Digital Twins

    Get PDF
    In this study, we propose a population-based, data-driven intelligent controller that leverages neural-network-based digital twins for hypothesis testing. Initially, a diverse set of control laws is generated using genetic programming with the digital twin of the system, facilitating a robust response to unknown disturbances. During inference, the trained digital twin is utilized to virtually test alternative control actions for a multi-objective optimization task associated with each control action. Subsequently, the best policy is applied to the system. To evaluate the proposed model predictive control pipeline, experiments are conducted on a multi-mode heat transfer test rig. The objective is to achieve homogeneous cooling over the surface, minimizing the occurrence of hot spots and energy consumption. The measured variable vector comprises high dimensional infrared camera measurements arranged as a sequence (655,360 inputs), while the control variable includes power settings for fans responsible for convective cooling (3 outputs). Disturbances are induced by randomly altering the local heat loads. The findings reveal that by utilizing an evolutionary algorithm on measured data, a population of control laws can be effectively learned in the virtual space. This empowers the system to deliver robust performance. Significantly, the digital twin-assisted, population-based model predictive control (MPC) pipeline emerges as a superior approach compared to individual control models, especially when facing sudden and random changes in local heat loads. Leveraging the digital twin to virtually test alternative control policies leads to substantial improvements in the controller’s performance, even with limited training data
    • …
    corecore