
Bayesian Neural Architecture Search using A
Training-Free Performance Metric

Andrés Camerob,a,∗, Hao Wangc, Enrique Albaa, Thomas Bäckc

aUniversidad de Málaga, ITIS Software, España
bGermanAerospace Center (DLR), Remote Sensing Technology Institute (IMF), Germany

cLeiden University, LIACS, The Netherlands

Abstract

Recurrent neural networks (RNNs) are a powerful approach for time se-
ries prediction. However, their performance is strongly affected by their
architecture and hyperparameter settings. The architecture optimization
of RNNs is a time-consuming task, where the search space is typically a
mixture of real, integer and categorical values. To allow for shrinking and
expanding the size of the network, the representation of architectures often
has a variable length. In this paper, we propose to tackle the architecture
optimization problem with a variant of the Bayesian Optimization (BO)
algorithm. To reduce the evaluation time of candidate architectures the
Mean Absolute Error Random Sampling (MRS), a training-free method to
estimate the network performance, is adopted as the objective function for
BO. Also, we propose three fixed-length encoding schemes to cope with the
variable-length architecture representation. The result is a new perspective
on accurate and efficient design of RNNs, that we validate on three problems.
Our findings show that 1) the BO algorithm can explore different network
architectures using the proposed encoding schemes and successfully designs
well-performing architectures, and 2) the optimization time is significantly
reduced by using MRS, without compromising the performance as compared
to the architectures obtained from the actual training procedure.

Keywords: bayesian optimization, recurrent neural network, architecture
optimization

∗Correspondent author
Email addresses: andres.camerounzueta@dlr.de (Andrés Camero),

h.wang@liacs.leidenuniv.nl (Hao Wang), eat@lcc.uma.es (Enrique Alba),
t.h.w.baeck@liacs.leidenuniv.nl (Thomas Bäck)

Preprint submitted to Applied Soft Computing April 23, 2021

ar
X

iv
:s

ub
m

it/
37

12
91

2
 [

cs
.L

G
]

 2
3

A
pr

 2
02

1
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/418433821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright notice: This article has been accepted for publication in the
journal Applied Soft Computing. Cite as: Camero, A., Wang, H., Alba, E.
and Bäck, T., 2021. Bayesian neural architecture search using a training-free
performance metric. Applied Soft Computing, p.107356. https://doi.org/
10.1016/j.asoc.2021.107356

1. Introduction

With the advent of deep learning, deep neural networks (DNNs) have
gained popularity, and they have been applied to a wide variety of prob-
lems [19, 29]. When it comes to sequence modeling and prediction, Recurrent
Neural Networks (RNNs) have proved to be the most suitable ones [29].
Essentially, RNNs are feedforward networks with feedback connections. This
feature allows them to capture long-term dependencies among the input
variables. Despite their good performance, they are very sensitive to their
hyperparameter configuration and hard to train [3, 19, 35, 37].

Finding an appropriate hyperparameter setting has always been a difficult
task. The conventional approach to tackle this problem is to do a trial/error
exploration based on expert knowledge. In other words, a human expert
defines an architecture, sets up a training method (usually a gradient descent-
based algorithm), and performs the training of the network until some
criterion is met. Lately, automatic methods based on optimization algorithms,
e.g., grid search, evolutionary algorithms or Bayesian optimization (BO),
have been proposed to replace the human expert. However, due to the
immense size and complexity of the search space, and the high computational
cost of training a DNN, hyperparameter optimization still poses an open
problem [19, 35].

Different approaches have been proposed for improving the performance
of hyperparameter optimization, ranging from evolutionary approaches
(a.k.a. neuroevolution) [35], to techniques to speed up the evaluation of
a DNN [7, 14]. Among these approaches, the Mean Absolute Error Random
Sampling (MRS) [7] poses a promising “low-cost, training-free, rule of thumb”
alternative to evaluate the performance of an RNN, which drastically reduces
the evaluation time.

In this study, we propose to tackle the architecture optimization problem
with a hybrid approach. Specifically, we combine BO [23, 33] for optimizing
the architecture, MRS [7] for evaluating the performance of candidate archi-
tectures, and ADAM [26] (a gradient descent-based algorithm) truncated
through time for training the final architecture on a given problem. We
benchmark our proposal on three problems (the sine wave, the filling level

2

https://doi.org/10.1016/j.asoc.2021.107356
https://doi.org/10.1016/j.asoc.2021.107356

of 217 recycling bins in a metropolitan area, and the load demand forecast
of an electricity company in Slovakia) and compare our results against the
state-of-the-art.

Therefore, the main contributions of this study are:

• We define a method to optimize the architecture of an RNN based on
BO and MRS that significantly reduces the time without compromising
the performance (error),

• We introduce multiple alternatives to cope with the variable-length
solution problem. Specifically, we study three encoding schemes and
two penalty approaches (i.e., the infeasible representation and the
constraint handling), and

• We propose a strategy to improve the performance of the surrogate
model of BO for variable-length solutions based on the augmentation
of the initial set of solutions, i.e., the warm-start.

The remainder of this article is organized as follows: Section 2 briefly
reviews some of the most relevant works related to our proposal. Section 3
introduces our proposed approach. Section 4 presents the experimental study,
and Section 5 provides conclusions and future work.

2. Related Work

In this Section, we summarize some of the most relevant works related to
our proposal. First, we introduce the architecture optimization problem and
some interesting proposals to tackle it in section 2.1. Second, we present the
neuroevolution, a research line for handling the problem (section 2.2). After
briefly reviewing the Mean Absolute Error Random Sampling (MRS) method
in section 2.3 we finally introduce Bayesian Optimization in section 2.4.

2.1. Architecture Optimization

The existing literature teaches us on the importance of optimizing the
architecture of a deep neural network on a particular problem, including, for
example, the type of activation functions, the number of hidden layers, and
the number of units for each layer [4, 10, 24]. For DNNs, the architecture
optimization task is usually faced by either manual exploration of the search
space (that is usually guided by expert knowledge) or by automatic methods
based on optimization algorithms, e.g., grid search, evolutionary algorithms
or Bayesian optimization [35].

The challenges here are three-fold: firstly, the search space is typically
huge due to the fact that the number of the parameters increases in proportion

3

to the number of layers. Secondly, the search space is usually a mixture
of real (e.g., the weights), integer (e.g., the number of units in each layer)
and categorical (e.g., the type of activation functions) values, resulting in
a demanding optimization task: different types of parameters naturally
require different approaches for handling them in optimization. Last, the
architecture optimization falls into the family of expensive optimization
problems as function evaluations in this case are highly time consuming
(which is affected both by the size of training data and the depth of the
architecture). In this paper, we shall denote the search space of architecture
optimization as H. The specification of H depends on the choice of encoding
schemes of the architecture (see Section 3.1).

To tackle the mentioned issues, many alternatives have been explored,
ranging from reducing the evaluation time of a configuration (e.g., early
stopping criteria based on the learning curve [14] or MRS [7]) to evolving
the architecture of the network (neuroevolution).

On the other hand, when it comes to RNN optimization, there are
two particular issues: the exploding and the vanishing gradient [3]. Many
alternatives have been proposed to tackle with this problems [37]. One of
the most popular ones is the Long Short Term Memory (LSTM) cell [20].
However, in spite of its ability to effectively deal with these issues, the
problem still remains open, because the learning process is also affected by
the weight initialization strategy [38] and the algorithm parameters [19].

2.2. Neuroevolution

Neuroevolutionary approaches typically represent the DNN architecture
as solution candidates in specifically designed variants of state-of-the-art
evolutionary algorithms. For instance, genetic algorithms (GA) have been
applied to evolve increasingly complex neural network topologies and the
weights simultaneously, in the so-called NeuroEvolution of Augmenting
Topologies (NEAT) method [28, 41]. However, NEAT has some limitations
when it comes to evolving RNNs [32], e.g., the fitness landscape is deceptive
and a large number of parameters have to be optimized. For RNNs, NEAT-
LSTM [39] and CoDeepNeat [30] extend NEAT to mitigate its limitations
when evolving the topology and weights of the network. Besides NEAT,
there are several evolutionary-based approaches to evolve an RNN, such
as EXALT [15], EXAMM [36], or a method using ant colony optimization
(ACO) to improve LSTM RNNs by refining their cellular structures [16].

A recent work [8] suggested to address the issue of huge training costs
when evolving the architecture. In that research, the objective function,
that is usually evaluated by training the candidate network on the full data

4

set evolved by a complete training of the candidate network, instead it is
approximated by the so-called MAE random sampling (MRS) method, in
which no actual training is required. In this manner, the time required for a
function evaluation is drastically reduced in the architecture optimization
process.

2.3. Mean Absolute Error Random Sampling

MAE Random Sampling is an approach to evaluate the expected error
performance of a given architecture. First, the weights of the network are
randomly initialized. Second, the error is calculated (i.e., the real and
expected output are compared). This two-step process is repeated, and
the errors are accumulated. Then, a probabilistic density function (e.g., a
truncated normal distribution) is fitted to the error values. Finally, the
probability of finding a set of weights whose error is below a user-defined
threshold is estimated. In other words, by using a random sampling of the
output (error), we are estimating how easy (i.e., a high probability) it would
be to find a good (i.e., small error) set of weights.

Given a training data set D = {(xi, yi)}Ni ,xi ∈ Rn, for a given network

architecture h ∈ H and Q i.i.d. random weight matrices {Wi}Qi=1,Wi ∼
N (0, I), the Mean Absolute Error (MAE) of this RNN is denoted as E =
{MAE(D,h, t,Wi)}Qi=1, where t is the number of time steps in the past
used for the prediction. Let µ and σ denote the sample mean and standard
deviation of the error sample E . Then the so-called Mean Absolute Error
Random Sampling (MRS) measure is defined as the empirical probability of
obtaining a better error rate than a user-specified threshold pm:

mrs(D,h, t, pm, Q) =
Φ
(pm−µ

σ

)
− Φ

(
−µ
σ

)
1− Φ

(
−µ
σ

) , (1)

where Φ stands for the cumulative distribution function (CDF) of the standard
normal distribution. The MRS value is calculated from a truncated normal
distribution (on the interval [0,∞)), whose location and scale parameters are
set to the sample mean µ and standard deviation σ, respectively. Throughout
this paper, we shall set pm to 1%. Intuitively, the higher MRS value a network
architecture that yields a higher MRS value would be more likely to possess
a much smaller (hence better) MAE rate after the backpropagation training.
Hence, it seems promising to use MRS as a training-free estimation for the
performance of neural networks.

In this paper, we shall adopt MRS as the objective function (that is
subject to maximization) for the architecture optimization. For a detailed
discussion of MRS, please refer to [7].

5

2.4. Bayesian Optimization

The so-called Bayesian Optimization (BO) (a.k.a. Efficient Global Op-
timization) [23, 33] algorithm has been applied extensively for automated
algorithm configuration tasks [2, 21, 22]. Bayesian optimization is a sequen-
tial global optimization strategy that does not require the derivatives of
the objective function and is designed to tackle expensive global optimiza-
tion problems. Given a real-valued maximization problem f : H → R (e.g.,
f = mrs in the following), BO employs a surrogate model, e.g., Gaussian pro-
cess regression (GPR) or random forests (RF), to approximate the landscape
of the objective function, which is trained on an initial data set (X,Y). Here,
X ⊂ H is typically sampled in the search space H using the Latin Hypercube
Sampling (LHS) method and Y = {f(h) : h ∈ X} is the set of function values
of points in X. Essentially, the prediction from surrogate models and the
estimated prediction uncertainty are considered simultaneously to propose
new candidate solutions for the evaluation. Loosely speaking, the model
prediction and its uncertainty are taken as input to the so-called acquisition
function (or infill criterion), which can be interpreted as the utility of un-
seen solutions and hence is subject to maximization when proposing new
candidate solutions. An example of commonly used acquisition functions is
the Expected Improvement (EI) [33]. Given the predictor m : H → R, the
uncertainty of predictions s(h) := E{(m(h)− f(h))2} of the surrogate model
and the current best function value ymax = max{Y }, the EI criterion can be
expressed for an unknown point h ∈ H:

EI(h) = I(h)Φ

(
I(h)

s(h)

)
+ s(h)φ

(
I(h)

s(h)

)
, (2)

where I(h) = m(h)− ymax and where φ stands for the probability density
function (PDF) of the standard normal distribution. Note that the new
candidate solution is generated by maximizing the EI criterion, namely

h∗ = arg max
h∈H

EI(h). (3)

After evaluating the new candidate solution h∗, h∗ and its objective
function value are included in the data set (X,Y) and the surrogate model
will be re-trained. Please, see [43] for an overview of the acquisition functions.

Despite being a proven technique for automated algorithm configuration
tasks [2, 21, 22], the state-of-the-art of BO does not reconcile well with
variable-length solution problems [25, 40]. Therefore, in this study we
propose multiple strategies to cope with variable-length solutions (inherent
to the architecture search problem).

6

2.5. Our contribution

Herein, we briefly summarize the novelty of the architecture search
described in the following sections and compare those to the state-of-the-art
works reviewed in this section.

• We propose to use the Mean Absolute Error Random Sampling (MRS)
procedure as the objective function for the architecture search, which
is relatively much inexpensive compared to full training of the same
architecture on the same data. In contrast to employing full training,
e.g., [39], our approach could allow for more iterations of the Bayesian
optimization algorithm.

• We designed three different encoding schemes that turn the neural ar-
chitecture search that is inherently a variable-dimensional problem(for
instance, the NEAT [28] approach operates on the network topology
directly) into an optimization problem with fixed dimensions, hence
facilitating the application of surrogate modeling and Bayesian opti-
mization accordingly.

• We contemplated making the Bayesian optimization more efficient and
effective by imposing a penalty on the infeasible solutions or warm-
starting the search process with infeasible solutions.

3. The proposed approach

In this paper, it is proposed to optimize the architecture of an RNN
by a combination of Bayesian optimization (BO) and Mean Absolute Error
Random Sample (MRS) to reduce the running time of the architecture
search. Specifically, this is to solve the following problem using Bayesian
optimization,

arg max
h∈H

mrs(D,h, pm, Q), (4)

given a training data set D, a cutoff threshold pm and the number of random
weights used in MRS. Importantly, as the architecture could shrink and
expand in the search, its natural representation takes a variable-length
form, which does not reconcile well with the state-of-the-art BO algorithm.
To resolve this issue, three fixed-length encoding schemes are proposed to
represent network architectures with variable sizes. Note that in this paper
the search space H is determined by each encoding scheme (please see below).
Also, we only employ the random forest model in the Bayesian optimization
procedure (described in Alg. 1) for the following reason: the design space

7

of neural architecture comprises of integer/Boolean variables, which can be
dealt with naturally by random forests. Gaussian process regression, which
works over Euclidean spaces, is by default not applicable in this scenario.
Although there are many recently endeavours in extending GPR’s ability to
handle the discrete and integer variables (e.g., [34]), it is not our major aim
herein to compare the performance of Bayesian optimization when coupled
with different surrogate models and hence we decided to choose the simplest
random forest model to validate the proposed algorithm.

3.1. Encoding Schemes

Assuming that the number of neurons per each layer is restricted to
the range [

¯
N..N̄], the number of layers is m ∈ [

¯
M..M̄], and T denotes the

maximum number of steps taken in back-propagation throughout time, three
encoding schemes are proposed in this paper:

• Plain: the total length of this encoding is m+ 1.

h = [h1, h2, . . . , hm, l] ∈
(
{0} ∪ [

¯
N..N̄]

)m × [1..T],

where hi is the number of neurons per each layer and l is the number
of time steps. Note that hi can take value zero, meaning there is no
neuron in this layer and hence it is effectively dropped in the decoding
procedure.

• Flag: the total length of this encoding is 2m+ 1.

h = [h1, b1, h2, b2, . . . , hm, bm, l] ∈ [
¯
N..N̄]m × {0, 1}m × [1..T],

where bi ∈ {0, 1} is the so-called “flag” that disables layer hi if bi = 0
when decoding such a representation to compute the actual architecture.

• Size: the total length of this encoding is m+ 2.

h = [h1, h2, . . . , hm, s, l] ∈ [
¯
N..N̄]m × [1..m]× [1..T],

where s ≤ m is the number of layers from the start of the representation
that are considered in decoding, namely only h1, h2, . . . , hs are used to
generate the actual architecture.

We shall use the notation code ∈ {plain,flag, size} for the encoding
scheme henceforth. In this manner, a fixed-length representation can be
used to optimize variable-size architectures. For each case, in the decoding
procedure, an output layer is appended to the RNN structure encoded in the
search algorithm, to match the expected output dimension. Note that the
activation function of the output layer has to be set according to the type of
the task in each problem.

8

Plain h1 h2 . . . hm l

Size h1 h2 . . . hm s l

Flag h1 b1 . . . hm bm l

Figure 1: Illustrations of the proposed encoding schemes.

3.2. Decoding

It is worthwhile to note that the decoding procedure of all three represen-
tations is a many-to-one mapping. For instance, given a plain representation
with a maximum of five layers (m = 5), [h1, h2, 0, 0, h5, l] and [h1, h2, h5, 0, 0, l]
are representing exactly the same architecture. If [h1, h2, h5, 0, 0, l] has al-
ready been evaluated in the optimization process, then assessing the perfor-
mance of [h1, h2, 0, 0, h5, l] is purely redundant. To determine the equivalence
among representations, it is necessary to apply appropriate decoding func-
tions for each type of representation:

decode(h) =

keep hi if hi > 0, i = 1, . . . ,m. if the plain encoding

keep hi if bi = 1, i = 1, . . . ,m. if the flag encoding

h 7→ [h1, h2, . . . , hs, l] if the size encoding

(5)

As the decoding function is a many-to-one mapping, the BO algorithm could
potentially propose the same architecture constantly (even with different
representations before decoding), and hence the search efficiency would be
drastically affected due to the following facts 1) the convergence of BO
would be hampered as such an iteration (where the seen architecture is
proposed again) makes no progress and the there is no information gain for
the surrogate model therein, and 2) the same network architecture has to
be evaluated again by MRS, which is wasteful even if MRS is much more
efficient as compared the full network training. To cope with the former
issue, it is important to avoid proposing the same architecture again as much
as possible. In this study, we propose two alternative strategies which both
rely on the definition of “infeasibility” (please see below) for representations:

• to set the MRS value of infeasible representations to the worst possible
value (zero), which will be learned by the surrogate model underlying
BO. Hence, the infeasible ones would not likely to be proposed by the
surrogate model, or

9

• to use the original MRS values (as in Eq. (1)) and add constraints on
the EI criterion to screen out infeasible representations. Note that in
this case the surrogate model will be built on the original MRS values.

For the latter, the simplest solution is to maintain a lookup table to register
the architectures (together with objective values) that are evaluated before.

Infeasible representation. Taking the plain encoding scheme as an example,
a representation taking the form [h1, . . . hq, 0, . . . , 0, l] (where hi > 0) shall
be called feasible, e.g., [h1, h2, h5, 0, 0, l] is an infeasible representation when
m = 5. [h1, h2, h5, 0, 0, l] represents the same architecture with the other
16 representations (by inserting two zeros at four different positions, e.g.,
[h1, h2, 0, 0, h5, l] and [h1, 0, h2, 0, h5, l]). The other representations shall
be called “infeasible”, which will be assigned with a fixed objective value
that is worse than all the feasible solutions. Particularly, since we are
maximizing MRS (which is a probability value), we set the penalized objective
function value to be equal to zero. The rationale behind this treatment
is that whenever the Bayesian optimization (BO) algorithm proposes an
infeasible representation, the penalized objective function value will be
learned by the surrogate model of BO and hence the chance of generating
such representations will diminish gradually. In this manner, we are guiding
the optimization process through the feasible ones and thus the search space
is virtually reduced. Note that the BO algorithm still needs to make lots of
infeasible trials before it stops proposing the infeasible ones, due to the large
combinatorial space. It is conceptually better to directly avoid generating
such representations by a constraint handling method (see below). The idea
of defining the infeasible representation can be easily extended to the flag
encoding scheme by masking hi with bi, i.e., replacing the value of hi with a
zero if bi is equal to zero. However, this idea can not be applied to the size
encoding scheme.

Constraint handling. To avoid generating infeasible representations, we
propose to assign penalty values to infeasible ones and to use a constraint
handling method when proposing new candidate representations in BO. In
addition, representations that are already evaluated will be also be penalized
by the length of itself (the maximum penalty at line 4). For an infeasible
representation that has not been evaluated (line 5), the number of zeros
located before the last nonzero element is used as the penalty value. In line
7, the decoded representation is registered in a set L to check whether a
representation has been evaluated before. The penalty value will be added to
the EI criterion when proposing the candidate representations (see line 13 of

10

Alg. 1). As for the constraint handling, a dynamic penalty method is adopted
here, where the penalty value will be scaled up with increasing iterations
of BO. We choose the dynamic penalty here because it yields a relatively
small penalty in the early phase of the search, allowing for exploring the
infeasible regions within the search space, which is particularly critical to
move between disconnected feasible regions. Also, as the search iteration
increases, the penalty value will be enlarged to ensure a feasible solution as
the outcome. In this manner, the following penalized infill criterion is used
to propose candidate representations (instead of Eq. 3):

h∗ = arg max
h∈H

EI(h;M)− Ct · penalty(h, X), (6)

where 1) X is a set containing all evaluated solutions (not decoded), 2) t is
the iteration counter of BO, and 3) C = 0.5 is a scaling factor. The intuition
of this treatment is that the penalty value would have a large impact on the
maximization of EI in the late stage, such that the probability of generating
infeasible solutions becomes marginal. Also, the penalty value of h equals its
length when it has been evaluated before, i.e., h ∈ X, for avoiding proposing
duplicated solutions, and otherwise, it is set to penalize h by the number of
zeros preceding non-zero elements thereof, namely,

penalty(h, X) =

{
length(h), if h ∈ X
| {hi : ∀i ∈ [1..n− 1] (hi = 0 ∩ ∃j ∈ [i+ 1..n](hj = 1))} |, otherwise.

(7)

3.3. A Warm-start Strategy

Within the Bayesian optimization algorithm, a surrogate model (e.g., a
random forest) is used to learn the mapping from the evaluated solutions
to the corresponding objective values. Typically, the Bayesian optimization
starts with initializing the surrogate model by some randomly generated
solutions. The basic idea of the so-called “warm-start” strategy is to augment
the initial solutions by a set of infeasible solutions that can be generated
before the optimization, such that the optimization process is started with a
priori information. The infeasible solutions can be generated by randomly
picking some components of a solution and setting them to zero for both the
plain and flag encoding. Additionally, the objective value of those infeasible
solutions is assigned with some default bad value (it is set to zero here
since the MRS measure, which is the objective function of the architecture
search, is bounded by zero from below), without the need to execute the
MRS procedure. We anticipate that this warm-start strategy will add a bias
in proposing the new candidate solutions in BO, steering the optimization
process away from the infeasible solutions.

11

In all, the pseudo-code of the proposed approach is described in Alg. 1.
After creating the initial data set of BO (X,Y) using Latin Hypercube
Sampling [31], the user can choose to turn on the generation of the warm-
data prior to the optimization loop (lines 6-9). A set X ′ consisting of decoded
representations is meant to track all the unique architectures that have been
evaluated in MRS (line 11). In line 16, the constrained EI maximization is
applied if the constraint method is enabled. The newly proposed solution
h∗ is decoded (line 20), after which we check if its decoded counterpart h∗′

has been evaluated (line 21). If h∗′ is not evaluated before (line 22-28), the
feasibility of h is then checked and its objective value is set to zero in case
of being infeasible (Otherwise, we evaluate its decoded representation h∗′ in
MRS (line 26)) If h∗′ has been evaluated before, its objective value is looked
up in the data set (X,Y) (line 30 and 31). The newly proposed candidate
representation and its objective value are appended to BO’s data set (X,Y)
(lines 33 and 34). Afterwards, the random forest model is re-trained on the
augmented data set (line 35).

4. Experiments

In this section, we present the experimental study performed to test the
proposed approach. First, we present the three prediction problems used
to benchmark the method. Second, we present the experimental setup and
the results of several combinations of the three strategies presented, i.e.,
infeasible solution, warm start, constraint handling, and encoding. Later,
we compare the time between MRS and (short training) Adam. Finally, we
study the error trade-off while changing the number of MRS samples.

4.1. Data sets

We tested the approach on three prediction problems: sine wave, waste [17],
and load forecast [11].

The sine wave. is a mathematical curve that represents a periodic oscillation.
Despite its simplicity, it is extensively used to analyze systems [5]. It is
usually expressed as a function of time (t), where A is the peak amplitude, f
the frequency, and φ the phase (Equation 8). Its study is interesting because,
by adding sine waves, it is possible to approximate any periodic waveform [5].
We sampled the sine wave described by: A = 1, f = 1, and φ = 0, in the
range t ∈ [0, 100] seconds, and at 10 samples per second. Then, given a
truncated part of the time series (i.e., a time steps number of points of the

12

Algorithm 1 Efficient Architecture Optimization for RNNs

1: input: A data set D, an encoding scheme code ∈ {plain, flag, size}, the
random forests algorithm rf, and the maximal iteration number tmax.

2: output: a full training RNN model
3: C ← 0.5, t← 0, pm ← 0.01, Q← 100
4: Determine the search space H according to code

5: Generate X ⊆ H using Latin Hypercube Sampling
6: Y ← {mrs(D, decode(h), t, pm, Q) : h ∈ X} . evaluate X
7: if “warm-start” is enabled then
8: generate the warm data (Xwarm, Ywarm) . See sec. 3.3
9: X ← X ∪Xwarm, Y ← Y ∪ Ywarm

10: end if
11: X ′ ← {decode(h) : h ∈ X} . set of evaluated architectures
12: M← rf(X,Y) . surrogate model training
13: while t < tmax do
14: if “constraint-handling” is enabled then
15: h∗ ← arg maxh∈H EI(h;M)−Ct · penalty(h, X) . penalized EI
16: else
17: h∗ ← arg maxh∈H EI(h;M) . unconstrained case
18: end if
19: h∗′ ← decode(h∗) . solution decoding (Eq. (5))
20: if h∗′ /∈ X ′ then . for unseen architectures
21: if “infeasible-solution” is enabled and
22: code 6= size and h∗ is infeasible then
23: y∗ ← −inf . penalty value for the infeasible ones
24: else
25: y∗ ← mrs(D,h∗′, t, pm, Q) . evaluate h∗′ using mrs
26: end if
27: X ′ ← X ′ ∪ {h∗′} . add to the set of evaluated architectures
28: else
29: S ←

{
y : ∀(h, y) ∈ (X,Y) ∧ decode(h) = h∗′

}
. the objective

value of evaluated solutions that decodes to the same architecture as h∗′

30: y∗ ← sample a value from S uniform at random
31: end if
32: X ← X ∪ {h∗}, Y ← Y ∪ {y∗} . augment the data set
33: M← rf(X,Y) . re-train the random forest model
34: t← t+ 1
35: end while
36: ybest ← max{Y } and hbest is the corresponding solution to ybest
37: htrained ← ADAM(D,hbest) . train the final neural architecture
38: return htrained

13

sampled sine wave), the problem consists in predicting the next value.

y(t) = A sin(2πft+ φ) (8)

The waste problem. introduced in [17], consists of predicting the filling level
of 217 recycling bins located in the metropolitan area of a city in Spain,
recorded daily for one year. Thus, given the historical filling levels of all
containers (217 input values per day), the task is to predict the next day
(i.e., the filling level of all bins). It is important to notice that this problem
has been used as a benchmark in several studies [18, 9, 8] and that it is a
real-world problem.

The load forecast problem. provided by the European Network on Intelligent
Technologies for Smart Adaptive Systems (EUNITE, http://www.eunite.
org) as part of a competition [11, 27], is a data set consisting of the electricity
load demand of the Eastern Slovakian Electricity Corporation. It was
recorded every half hour, from January 1, 1997, to January 31, 1999. Also,
the temperature (daily mean) and the working calendar for this period are
provided. Then, based on this data, the challenge is to predict the next
maximum daily load. In other words, given the load demand (52 variables),
i.e., the load demand recorded every half hour (48), the max daily load (1),
the daily average temperature (1), the weekday (1), and the working day
information (1), the task is to predict the max daily load of the next day (1).
Note that the last month is used as the test data, thus our results may be
compared directly against the competitors.

4.2. Performance

We implemented our approach1 in Python 3, using DLOPT [6], MIP-
EGO [42], Keras [12], and Tensorflow [1]. We used LSTM cells to build
the decoded stacked architectures (as a way to mitigate the exploding and
vanishing gradient problems [20]), and Adam truncated through time [44]
(i.e., sharing all parameters in the unfolded models) to train the final solutions,
with default parameter values [26].

We defined the search space (i.e., the constraints to the RNN architectures)
of the three problems studied (Table 1) according to the datasets and the
state-of-the-art. Particularly, the sine wave search space is taken from [8]
and the waste search space is copied from [9] to enable a direct comparison.

1Code available in https://github.com/acamero/dlopt

14

http://www.eunite.org
http://www.eunite.org
https://github.com/acamero/dlopt

Table 1: Optimization search spaces

Parameter Load Range Sine Range Waste Range

Hidden layers (M) [1,8] [1,3] [1,8]
Look back (T) [2,30] [2,30] [2,30]
Neurons per layer (N) [10,100] [1,100] [1,300]

Also, to ease the visualisation of the results, we defined the following
naming scheme to denote different combinations of encoding, warm start,
invalid, and the constraint handling method:
[constraint][warm start][infeasible][encoding].

Specifically, we use a character to denote each variant: Constraint (C),
Warm start (w), Infeasible (I), and Encoding (F: flag, S: size, and P: plain). A
dash (-) means that the corresponding alternative was not used. For example,
-W-F corresponds to the combination of warm data and the flag encoding
(i.e., without constraint handling and without invalid solution penalty).

Finally, we execute 30 independent runs for each combination of encoding,
warm start, and the constraint handling method on a heterogeneous Linux
cluster with more than 200 cores and 700 GB RAM, managed by HTCondor.
In these experiments we used the optimization parameter values presented
in Table 2. The remainder of this subsection introduces the performance
results for the three problems and some insights into the solutions.

Table 2: BO and MRS parameter values

Parameter Value Parameter Value
No. Samples (Q) 100 Threshold (pm) 0.01
Max Evaluations 100 Init Solutions 10
Epochs 1000 Dropout 0.5

Note that the parameters presented in Table 1 and 2 were taken from [8, 9].
We decided to chose these values (instead of performing an hyperparameter
tuning) to enable a direct comparison with our competitors.

4.2.1. Sine Wave

The range of the sine function is [0, 1], thus we set the activation function
of the dense output layer to be a tanh. Due to the immense number of
invalid solutions, we implemented a limited version of the infeasible solution
listing, i.e., instead of enumerating all infeasible solutions, we list a subset of
them. Particularly, we listed the infeasible solutions described by the min

15

and max values of each parameter (i.e., the number of neurons per layer and
look back). Thus, we added 80 infeasible solutions to the warm-start.

Table 3 summarizes the results of the experiments, where MLES and
GDET are the results presented in [8], and the other results correspond to
the tested combinations. Figure 2 shows the distribution of the MAE of the
solutions of the sine wave problem. The Friedman rank sum test p-value is
less than 2.2e-16 (chi-squared = 138.17, df = 11). Therefore, we performed a
pairwise comparison using the Conover test for a two-way balanced complete
block design [13], and the Holm p-value adjustment method. The results are
presented in the row label Conover in Table 3. Groups sharing a letter are
not significantly different (α = 0.01).

The results show that using BO and MRS improves the performance of
the final solution (error). On the other hand, multiple combinations of the
proposed strategies (i.e., the combinations grouped by the letter d) show a
similar performance.

Figure 2: MAE of the sine wave solutions

4.2.2. Waste

The filling level of the bins ranges from 0 to 1. Accordingly, we set the
activation function of the output layer to be a sigmoid. In this case, we
added 126976 invalid solutions to the warm start.

16

T
a
b

le
3
:

S
in

e
o
p

ti
m

iz
a
ti

o
n

re
su

lt
s

(M
A

E
o
f

th
e

b
es

t
so

lu
ti

o
n

).
G

ro
u

p
s

sh
a
ri

n
g

a
le

tt
er

in
th

e
C

o
n

ov
er

ro
w

a
re

n
o
t

si
g
n

ifi
ca

n
tl

y
d

iff
er

en
t

G
D

E
T

M
L

E
S

—
F

–I
F

-W
-F

-W
IF

C
–F

C
W

IF
—

S
C

—
S

—
P

–
IP

M
ea

n
0.

14
1
9

0
.1

04
7

0.
07

85
0.

08
82

0.
08

16
0.

11
19

0.
08

39
0.

14
52

0.
0
85

7
0.

0
74

5
0.

1
19

8
0.

1
36

3
M

ed
ia

n
0
.1

4
89

0.
09

9
6

0
.0

73
8

0.
08

82
0.

07
72

0.
08

61
0.

07
89

0.
09

35
0.

0
74

8
0
.0

7
21

0
.1

1
70

0
.1

2
44

M
ax

0.
26

9
5

0
.2

46
6

0.
11

72
0.

12
66

0.
11

85
0.

36
77

0.
12

76
0.

57
23

0.
1
79

4
0.

0
96

2
0.

1
70

0
0.

3
29

0
M

in
0
.0

5
40

0.
06

3
1

0
.0

44
9

0.
05

05
0.

05
18

0.
04

92
0.

06
31

0.
05

77
0.

0
58

4
0
.0

5
25

0
.0

9
22

0
.0

6
65

S
d

0.
05

1
3

0
.0

3
50

0.
01

94
0.

01
82

0.
01

61
0.

06
95

0.
01

54
0.

13
67

0.
0
27

4
0.

0
10

9
0.

0
17

7
0.

0
55

8

C
on

ov
er

a
b

c
d

ef
d

e
b

f
d

ef
c

d
ef

d
a

a

T
a
b

le
4
:

W
a
st

e
o
p

ti
m

iz
a
ti

o
n

re
su

lt
s

(M
A

E
o
f

th
e

fi
n

a
l

so
lu

ti
o
n

).
G

ro
u

p
s

sh
a
ri

n
g

a
le

tt
er

in
th

e
C

o
n

ov
er

ro
w

a
re

n
o
t

si
g
n

ifi
ca

n
tl

y
d
iff

er
en

t
C

it
ie

s
M

L
E

S
—

F
–I

F
-W

-F
-W

IF
C

–F
C

W
IF

—
S

C
—

S
—

P
–
IP

M
ea

n
0.

07
2
8

0
.0

79
0

0.
07

22
0.

08
21

0.
07

30
0.

08
12

0.
07

28
0.

07
28

0.
0
73

2
0.

0
72

5
0.

0
74

4
0.

0
73

5
M

ed
ia

n
0
.0

7
31

0.
07

2
8

0
.0

72
3

0.
07

35
0.

07
25

0.
07

30
0.

07
25

0.
07

25
0
.0

7
36

0
.0

7
23

0
.0

7
37

0
.0

7
31

M
ax

0
.0

75
7

0
.1

3
77

0.
07

91
0.

12
27

0.
08

06
0.

12
31

0.
07

67
0.

07
67

0
.0

75
6

0.
0
76

0
0.

0
92

0
0.

0
88

3
M

in
0
.0

7
09

0.
06

9
1

0
.0

69
5

0.
06

91
0.

07
03

0.
06

98
0.

06
92

0.
07

01
0
.0

6
91

0
.0

6
88

0
.0

7
17

0
.0

7
01

S
d

0
.0

0
12

0.
01

7
2

0
.0

01
9

0.
01

56
0.

00
20

0.
01

77
0.

00
18

0.
00

14
0.

0
01

5
0.

0
01

6
0.

0
04

1
0
.0

0
27

C
on

ov
er

a
b

c
a

b
c

a
b

cd
a

b
d

a
b

a
b

b
cd

a
b

cd
b

cd

T
a
b
le

5
:

O
p
ti

m
iz

a
ti

o
n

re
su

lt
s

(M
A

P
E

o
f

th
e

fi
n
a
l

so
lu

ti
o
n
).

G
ro

u
p
s

sh
a
ri

n
g

a
le

tt
er

in
th

e
C

o
n
ov

er
ro

w
a
re

n
o
t

si
g
n
ifi

ca
n
tl

y
d
iff

er
en

t

S
V

M
R

B
F

W
K

+
—

F
–I

F
-W

-F
-W

IF
C

–F
C

W
IF

—
S

C
—

S
—

P
–
IP

M
ea

n
2.

87
9

N
A

N
A

2.
72

6
3.

14
8

2.
59

5
3.

06
6

2.
15

8
2.

84
4

2
.3

2
1

2.
2
35

4
.8

2
3

5.
2
87

M
ed

ia
n

2
.9

4
5

N
A

N
A

2.
46

6
2.

93
3

2.
36

8
2.

81
4

2.
09

9
2.

84
6

2.
1
25

2
.0

5
0

5
.0

4
0

5.
2
13

M
ax

3
.4

80
N

A
N

A
6.

27
1

5.
20

7
4.

59
4

6.
03

1
3.

36
4

3.
90

1
6
.2

7
1

4.
6
05

6
.9

9
9

11
.0

0
4

M
in

1
.9

5
0

1
.4

81
1
.3

23
1.

84
0

1.
75

9
1.

59
3

1.
91

9
1.

45
2

2.
03

3
1.

6
54

1
.6

5
7

3.
1
42

3
.4

1
5

S
d

0
.0

0
4

N
A

N
A

0.
88

8
1.

01
3

0.
76

5
1.

00
0

0.
44

0
0.

51
5

0.
7
74

0.
5
64

0
.8

8
4

1.
7
27

C
on

ov
er

N
A

N
A

N
A

ab
c

a
b

c
a

d
ab

ce
d

e
f

f

17

Table 4 summarizes the results of the tests on the waste problem. The
table also includes the results of [9] (Cities) and [8] (MLES). Figure 3 shows
the distribution of the MAE of the solutions of the waste problem. The
Friedman rank sum test p-value is equal to 0.02401 (chi-squared = 22.048,
df = 11). Therefore, we performed a pairwise comparison using the Conover
test for a two-way balanced complete block design , and the Holm p-value
adjustment method. The results are presented in the row label Conover in
Table 4. Groups sharing a letter are not significantly different (α = 0.01).

In this case, our results are as good as our competitors (the results
grouped by the letter a). Nonetheless, it is important to remark that [9]
(Cities) trains every candidate solution using Adam, turning out to be more
time-consuming.

Figure 3: MAE waste

4.2.3. Load Forecast

According to the preprocessing performed in [27], we normalized the data
to have a mean equal to zero and a standard deviation equal to one. Then,
we set the activation function of the output layer to be linear. Besides, we
added 126976 invalid solutions to the warm start.

Table 4 summarizes our results and the ones presented in [11] (SVM),
and [27] (RBF and WK+, WKNNRW in the original work). In this case,
we present the mean absolute percentage error (MAPE) because it is the

18

performance metric used in the referred studies (NA indicates the correspond-
ing data is not available). Figure 3 shows the distribution of the MAPE
of the solutions of the waste problem. Unfortunately, in this case, we do
not have the detailed results of SVM, RBF, and WK+. Thus, we can not
perform a detailed analysis considering all competitors. Nonetheless, we
performed a detailed analysis considering exclusively the results of our tests.
The Friedman rank sum test p-value is less than 2.2 × 10−16 (chi-squared
= 146.38, df = 9). Therefore, we performed a pairwise comparison using
the Conover test for a two-way balanced complete block design, and the
Holm p-value adjustment method. The results are presented in the row label
Conover in Table 5. Groups sharing a letter are not significantly different
(α = 0.01).

Figure 4: MAPE load forecast

4.2.4. Solutions Overview

To get insights into the RNN architectures, we analyzed the (best)
solutions. Figure 5 shows the percentage of solutions that have a specific
number of hidden layers (within the search space defined in Table 1). Figure 6
presents the percentage of solutions that have each of the possible look backs.
Figure 7 depicts the distribution of the total number of LSTM cells.

It is no surprise that the plain encoding produced deeper and bigger
(in terms of the total number of neurons) solutions, because of its own

19

encoding limitations. On the other hand, two relatively similar combinations
in terms of the error, namely C--F and C--S, present different architecture
combinations.

Also, it is quite interesting that there is no clear architecture trend. There
are some value ranges that seem to be more suitable, e.g, shallower instead
of deeper networks, or mid-to-upper look back values for the load forecast
problem, but we can not conclude that there is an all-rounder architecture.

Figure 5: Number of hidden layers of the solutions

4.3. Time Analysis

The results presented in this study (Table 4) show that using MRS as a
proxy of the performance is as good as using short training results. However,
as it is claimed in [7], MRS is supposed to be a low-cost approach. Therefore,
we compared the run time of Adam against MRS. Specifically, we randomly
select 16 runs from the previous experiments (i.e., 100 architectures evaluated
in 16 runs, totaling 1600 RNNs). Then, for each network we performed a
MRS (100 samples) and a 10 epochs training using Adam.

We repeated the experiments because of two reasons. First, the previous
experiments were run on a cluster of heterogeneous computers (hence the
run times were not fairly comparable). Secondly, the final solutions were
trained for 1000 epochs, thus the comparison would not have been fair.

20

Figure 6: Look back or time steps of the solutions

Table 6 summarizes the time in seconds for both approaches, and Figure 8
shows the distribution of the time (in seconds). We performed a Wilcoxon
rank sum test to compare both approaches. Note that we compare the
overall results and the results of each problem independently. The results
are presented in the table (Signif.) using the following codes: 0 ‘***’ 0.001
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

On average, MRS is 2.6 times faster than Adam. These results are in line
with the ones presented in [8]. In other words, if we have used the results
of 10 epochs training using Adam to compare the architectures during the
optimization process (instead of MRS), we will have spent more than twice
the time!

4.4. Error Trade-off

Moreover, we studied how much the outcome of MRS is affected (i.e., error
of the final solution) when the number of samples is changed. We repeated
the waste and load forecast experiments using the C--S configuration, and
30, 50, and 200 samples per each solution evaluated (MRS).

Table 7 summarizes the error trade-off results. The Friedman rank sum
test p-value is equal to 0.004996 (chi-squared = 12.84, df = 3) in the waste
problem, while it is equal to 0.0003184 (chi-squared = 18.68, df = 3) in the
load forecast problem. Therefore, we performed a pairwise comparison using

21

Figure 7: Distribution of the total number of LSTM cells

the Conover test for a two-way balanced complete block design [13], and
the Holm p-value adjustment method. The results are presented in the row
Conover of both tables. Groups sharing a letter are not significantly different
(α = 0.01).

The results show that we might reduce the time (by taking fewer samples)
but with an error increase. On the other hand, doubling the number of
samples (used in this study), we will have not reduced the error. Nonetheless,
it is quite interesting that even with a small number of samples, lets say 30,
it is possible to estimate the performance of a network.

4.5. Algorithm Convergence

Finally, we studied the convergence of the proposed algorithm. Partic-
ularly, we analyzed the fitness (probability estimated by the MRS) of the
solutions as the search was done. Figure 9 and 10 depict the best-so-far
MRS value against the number of candidates evaluated, average over all inde-
pendent runs for each combination of encoding, warm-start, and constraint
handling methods (shown by the bold line). Also, the standard deviation is
illustrated by the shaded areas. It is important to point out that a higher
MRS value is correlated with a better performance after training the network
using Adam [7], hence indicating that all combinations are converging.

22

Table 6: Time comparison in seconds: Adam vs MRS. According to the Wilcoxon rank
sum test, there is a significant improvement

[seconds] Load Sin Waste Overall

Adam

Mean 72.1 41.8 45.3 53.1
Median 62.6 32.3 29.1 34.1
Max 220.9 105.8 172.3 220.9
Min 21.9 23.0 7.8 7.8
Sd 48.7 19.0 40.8 40.5

MRS

Mean 13.8 27.9 19.3 20.3
Median 11.7 23.9 13.8 20.0
Max 25.3 56.8 61.6 61.6
Min 10.8 20.4 10.9 10.8
Sd 4.3 8.0 10.7 10.0

Signif. (Adam vs MRS) *** *** *** ***

Table 7: Waste and Load trade-off results. Groups sharing a letter in the Conover row are
not significantly different

Samples 30 50 100 200

Waste
(MAE)

Mean 0.0734 0.0734 0.0725 0.0723
Median 0.0732 0.0740 0.0723 0.0726
Max 0.0778 0.0780 0.0760 0.0757
Min 0.0694 0.0690 0.0688 0.0685
Sd 0.0017 0.0020 0.0016 0.0018

Load
(MAPE)

Mean 2.664 2.616 2.235 2.137
Median 2.510 2.555 2.050 2.073
Max 4.436 3.750 4.605 3.146
Min 1.930 1.884 1.657 1.521
Std 0.597 0.492 0.564 0.405

Conover a a b b

23

Figure 8: Time comparison: Adam (10 epochs) vs MRS (100 samples)

Moreover, to show the impact of the penalty function, we compared
the pairs C--S and ---S, C--F and ---F. Notice that the results present
the average value of the MRS and the standard deviation (shaded area) for
30 independent runs (each combination) in the waste prediction problem.
Therefore, we assume that the difference in performance (i.e., the convergence)
can be explained by the the penalty.

5. Conclusions and Future Work

In this study, we propose to optimize the architecture of a recurrent
neural network with a combination of Bayesian optimization and Mean
Absolute Error Random Sampling (MRS). More specifically, we propose
three fixed-length encoding schemes to represent variable size architectures
(flag, plain, and size), an alternative to deal with the many-to-one problem
derived from the fixed-variable-length problem (i.e., the infeasiblesolution),
and two strategies to cope with the fixed-variable-length problem, namely
warm-start and constraints handling.

We test our proposal on three prediction problems: the sine wave, the
waste filling level of 217 bins in a metropolitan area of a city in Spain,
and the maximum daily load forecast of an electricity company in Slovakia.
We benchmark our proposal against state-of-the-art techniques, and we

24

Figure 9: Average convergence of the fitness of the solutions for the waste problem

performed a time comparison and an error trade-off study. Notice that for
each problem a different activation function has been used, namely, tanh,
sigmoid, and linear.

The results show that none of the strategies presented outperforms the
others in all cases. Nonetheless, using the size encoding and the constraints
handling consistently show to be an effective alternative to the problem.

Moreover, the results show that MRS is an efficient alternative to optimize
the architecture of an RNN. Particularly, we showed that evaluating an
architecture using MRS is 2.6 times faster than performing a short training
(ten epochs) using Adam, and without losing performance.

Overall, using BO, in combination with MRS, shows to be a competitive
approach to optimize the architecture of an RNN. It offers a state-of-the-art
error performance, while the time is drastically reduced.

Finally, for the next step, several issues have to be addressed. First, it is
necessary to test on more data sets to validate the proposal. Second, MRS
has to be further researched because it shows to be a promising alternative,
but there is no clear explanation of why it works. Additionally, it will be
interesting to use the warm start strategy to explore augmenting restarts,
i.e., iteratively increase the number of hidden layers and feeding the model
with the previous results.

25

Figure 10: Average convergence of the fitness of the solutions for the load forecast problem

(a) (b)

Figure 11: Impact of the penalty on the average convergence (waste problem)

Acknowledgments

This work was supported in part by Universidad de Málaga, Andalućıa
Tech, Consejeŕıa de Economı́a y Conocimiento de la Junta de Andalúıa,
Ministerio de Economı́a, Industria y Competitividad, Gobierno de España,

26

and European Regional Development Fund grant numbers TIN2017-88213-
R (6city.lcc.uma.es), RTC-2017-6714-5 (ecoiot.lcc.uma.es), and UMA18-
FEDERJA-003 (Precog). And by the Helmholtz Association’s Initiative
and Networking Fund (INF) under the Helmholtz AI platform grant agree-
ment (ID ZT-I-PF-5-1).

References

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., et al., 2016. Tensorflow: A
system for large-scale machine learning., in: OSDI, pp. 265–283.

[2] Bartz-Beielstein, T., Lasarczyk, C.W.G., Preuss, M., 2005. Sequential
Parameter Optimization, in: 2005 IEEE Congress on Evolutionary
Computation, pp. 773–780 Vol.1. doi:10.1109/CEC.2005.1554761.

[3] Bengio, Y., Simard, P., Frasconi, P., 1994. Learning long-term depen-
dencies with gradient descent is difficult. IEEE transactions on neural
networks 5, 157–166.

[4] Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B., 2011. Algorithms
for hyper-parameter optimization, in: Shawe-Taylor, J., Zemel, R.S.,
Bartlett, P.L., Pereira, F., Weinberger, K.Q. (Eds.), Advances in Neural
Information Processing Systems 24. Curran Associates, Inc., pp. 2546–
2554.

[5] Bracewell, R.N., Bracewell, R.N., 1986. The Fourier transform and its
applications. volume 31999. McGraw-Hill New York.

[6] Camero, A., Toutouh, J., Alba, E., 2018a. Dlopt: deep learning opti-
mization library. arXiv preprint arXiv:1807.03523 .

[7] Camero, A., Toutouh, J., Alba, E., 2018b. Low-cost recurrent neural
network expected performance evaluation. Preprint arXiv:1805.07159 .

[8] Camero, A., Toutouh, J., Alba, E., 2020. Random error sampling-
based recurrent neural network architecture optimization. Engineering
Applications of Artificial Intelligence 96, 103946.

[9] Camero, A., Toutouh, J., Ferrer, J., Alba, E., 2019. Waste generation
prediction under uncertainty in smart cities through deep neuroevolution.
Revista Facultad de Ingenieŕıa .

27

http://dx.doi.org/10.1109/CEC.2005.1554761

[10] Camero, A., Toutouh, J., Stolfi, D.H., Alba, E., 2018c. Evolutionary
deep learning for car park occupancy prediction in smart cities, in: Intl.
Conf. on Learning and Intelligent Optimization, Springer. pp. 386–401.

[11] Chen, B.J., Chang, M.W., et al., 2004. Load forecasting using support
vector machines: A study on eunite competition 2001. IEEE tran on
power systems 19, 1821–1830.

[12] Chollet, F., et al., 2015. Keras. https://keras.io.

[13] Conover, W.J., Iman, R.L., 1979. On multiple-comparisons procedures.
Los Alamos Sci. Lab. Tech. Rep. LA-7677-MS 1, 14.

[14] Domhan, T., Springenberg, J.T., Hutter, F., 2015. Speeding up auto-
matic hyperparameter optimization of deep neural networks by extrap-
olation of learning curves, in: Proceedings of the 24th International
Conference on Artificial Intelligence, AAAI Press. pp. 3460–3468.

[15] ElSaid, A., Benson, S., Patwardhan, S., Stadem, D., Desell, T., 2019.
Evolving recurrent neural networks for time series data prediction of
coal plant parameters, in: Intl Conf on the Applications of Evolutionary
Computation (Part of EvoStar), Springer. pp. 488–503.

[16] ElSaid, A., Jamiy, F.E., Higgins, J., Wild, B., Desell, T., 2018. Using ant
colony optimization to optimize long short-term memory recurrent neural
networks, in: Proceedings of the Genetic and Evolutionary Computation
Conference, ACM. pp. 13–20. URL: http://doi.acm.org/10.1145/
3205455.3205637, doi:10.1145/3205455.3205637.

[17] Ferrer, J., Alba, E., 2018. BIN-CT: sistema inteligente para la gestión de
la recogida de residuos urbanos, in: International Greencities Congress,
pp. 117–128.

[18] Ferrer, J., Alba, E., 2019. Bin-ct: Urban waste collection based on
predicting the container fill level. Biosystems .

[19] Haykin, S., 2009. Neural networks and learning machines. volume 3.
Pearson Upper Saddle River, NJ, USA:.

[20] Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural
computation 9, 1735–1780.

[21] Horn, D., Wagner, T., Biermann, D., Weihs, C., Bischl, B., 2015. Model-
Based Multi-objective Optimization: Taxonomy, Multi-Point Proposal,

28

https://keras.io
http://doi.acm.org/10.1145/3205455.3205637
http://doi.acm.org/10.1145/3205455.3205637
http://dx.doi.org/10.1145/3205455.3205637

Toolbox and Benchmark, in: Evolutionary Multi-Criterion Optimization,
Springer. pp. 64–78.

[22] Hutter, F., Hoos, H.H., Leyton-Brown, K., 2011. Sequential model-
based optimization for general algorithm configuration, in: International
conference on learning and intelligent optimization, Springer. pp. 507–
523.

[23] Jones, D.R., Schonlau, M., Welch, W.J., 1998. Efficient global optimiza-
tion of expensive black-box functions. Journal of Global optimization
13, 455–492.

[24] Jozefowicz, R., Zaremba, W., Sutskever, I., 2015. An empirical ex-
ploration of recurrent network architectures, in: Proceedings of the
32Nd International Conference on International Conference on Machine
Learning - Volume 37, JMLR.org. pp. 2342–2350.

[25] Kim, J., McCourt, M., You, T., Kim, S., Choi, S., 2019. Bayesian
optimization over sets, in: 6th ICML Workshop on Automated Machine
Learning.

[26] Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 .

[27] Lang, K., Zhang, M., Yuan, Y., Yue, X., 2018. Short-term load forecast-
ing based on multivariate time series prediction and weighted neural
network with random weights and kernels. Cluster Computing , 1–9.

[28] Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P., 2009. Exploring
strategies for training deep neural networks. Journal of machine learning
research 10, 1–40.

[29] LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. nature 521,
436.

[30] Liang, J., Meyerson, E., Miikkulainen, R., 2018. Evolutionary archi-
tecture search for deep multitask networks, in: Proceedings of the
Genetic and Evolutionary Computation Conference, ACM. pp. 466–
473. URL: http://doi.acm.org/10.1145/3205455.3205489, doi:10.
1145/3205455.3205489.

[31] McKay, M.D., Beckman, R.J., Conover, W.J., 1979. Comparison of
three methods for selecting values of input variables in the analysis of
output from a computer code. Technometrics 21, 239–245.

29

http://doi.acm.org/10.1145/3205455.3205489
http://dx.doi.org/10.1145/3205455.3205489
http://dx.doi.org/10.1145/3205455.3205489

[32] Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon,
O., Raju, B., Shahrzad, H., Navruzyan, A., Duffy, N., et al., 2019.
Evolving deep neural networks, in: Artificial Intelligence in the Age of
Neural Networks and Brain Computing. Elsevier, pp. 293–312.

[33] Močkus, J., 1975. On Bayesian Methods for Seeking the Extremum,
in: Optimization Techniques IFIP Technical Conference, Springer. pp.
400–404.

[34] Nguyen, D., Gupta, S., Rana, S., Shilton, A., Venkatesh, S., 2020.
Bayesian Optimization for Categorical and Category-Specific Contin-
uous Inputs, in: The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sym-
posium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, AAAI Press. pp. 5256–5263.
URL: https://aaai.org/ojs/index.php/AAAI/article/view/5971.

[35] Ojha, V.K., Abraham, A., Snášel, V., 2017. Metaheuristic design
of feedforward neural networks: A review of two decades of research.
Engineering Applications of Artificial Intelligence 60, 97–116.

[36] Ororbia, A., ElSaid, A., Desell, T., 2019. Investigating recurrent neural
network memory structures using neuro-evolution, in: Proceedings of the
Genetic and Evolutionary Computation Conference, ACM. pp. 446–455.

[37] Pascanu, R., Mikolov, T., Bengio, Y., 2013. On the difficulty of training
recurrent neural networks, in: Proceedings of the 30th International
Conference on International Conference on Machine Learning - Volume
28, JMLR.org. pp. III–1310–III–1318.

[38] Ramos, E.Z., Nakakuni, M., Yfantis, E., 2017. Quantitative measures to
evaluate neural network weight initialization strategies, in: 2017 IEEE
7th Annual Computing and Communication Workshop and Conference
(CCWC), IEEE. pp. 1–7.

[39] Rawal, A., Miikkulainen, R., 2016. Evolving deep lstm-based memory
networks using an information maximization objective, in: Proceedings
of the Genetic and Evolutionary Computation Conference 2016, ACM.
pp. 501–508.

30

https://aaai.org/ojs/index.php/AAAI/article/view/5971

[40] Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N., 2015.
Taking the human out of the loop: A review of bayesian optimization.
Proceedings of the IEEE 104, 148–175.

[41] Stanley, K.O., Miikkulainen, R., 2002. Evolving neural networks through
augmenting topologies. Evolutionary computation 10, 99–127.

[42] Wang, H., Emmerich, M., Bäck, T., 2018. Cooling strategies for the
moment-generating function in bayesian global optimization, in: 2018
IEEE Congress on Evolutionary Computation (CEC), IEEE. pp. 1–8.

[43] Wang, H., van Stein, B., Emmerich, M., Bäck, T., 2017. A New
Acquisition Function for Bayesian Optimization based on the Moment-
Generating Function, in: 2017 IEEE International Conference on Sys-
tems, Man, and Cybernetics (SMC), pp. 507–512. doi:10.1109/SMC.
2017.8122656.

[44] Werbos, P.J., 1990. Backpropagation through time: what it does and
how to do it. Proceedings of the IEEE 78, 1550–1560.

31

http://dx.doi.org/10.1109/SMC.2017.8122656
http://dx.doi.org/10.1109/SMC.2017.8122656

	1 Introduction
	2 Related Work
	2.1 Architecture Optimization
	2.2 Neuroevolution
	2.3 Mean Absolute Error Random Sampling
	2.4 Bayesian Optimization
	2.5 Our contribution

	3 The proposed approach
	3.1 Encoding Schemes
	3.2 Decoding
	3.3 A Warm-start Strategy

	4 Experiments
	4.1 Data sets
	4.2 Performance
	4.2.1 Sine Wave
	4.2.2 Waste
	4.2.3 Load Forecast
	4.2.4 Solutions Overview

	4.3 Time Analysis
	4.4 Error Trade-off
	4.5 Algorithm Convergence

	5 Conclusions and Future Work

