56 research outputs found

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Machine learning and privacy preserving algorithms for spatial and temporal sensing

    Get PDF
    Sensing physical and social environments are ubiquitous in modern mobile phones, IoT devices, and infrastructure-based settings. Information engraved in such data, especially the time and location attributes have unprecedented potential to characterize individual and crowd behaviour, natural and technological processes. However, it is challenging to extract abstract knowledge from the data due to its massive size, sequential structure, asynchronous operation, noisy characteristics, privacy concerns, and real time analysis requirements. Therefore, the primary goal of this thesis is to propose theoretically grounded and practically useful algorithms to learn from location and time stamps in sensor data. The proposed methods are inspired by tools from geometry, topology, and statistics. They leverage structures in the temporal and spatial data by probabilistically modeling noise, exploring topological structures embedded, and utilizing statistical structure to protect personal information and simultaneously learn aggregate information. Proposed algorithms are geared towards streaming and distributed operation for efficiency. The usefulness of the methods is argued using mathematical analysis and empirical experiments on real and artificial datasets

    Design and Implementation of a Multi-Purpose Object-Orientated Spatio-Temporal (MPooST) Data Model for Cadastral and Land Information Systems (C/LIS)

    Get PDF
    The application of the object-oriented methodology in geospatial information management has significantly increased during the last 10 years and tends to gradually replace the status quo relational technology. In general, object orientation offers a flexible and adaptable modelling framework to satisfy the most demanding complex data structuring requirements. The objective of this thesis is to determine how a modern Land Information System used for cadastral purposes can benefit from an object-oriented methodology. To this aim, a Multi-Purpose, Object-Oriented Spatio-Temporal (abbreviated as MPOOST) data model has been developed. In brief, the MPOOST data model embodies spatial data and their temporal reference in the form of objects which contain their attributes as well as their behaviour. The design of the MPOOST data model has been specified in such a way that it enables other data models to exploit its functionality, therefore enabling the multi-purpose aspect. At first, the requirements of Land Information Systems are being examined. Next, the functionality that is offered by the object-oriented methodology is being analysed in detail. Even if the bibliography is quite rich in relevant research, however there seems to be no starting point regarding the application of OO in LIS. Hence, a whole chapter of this thesis has been dedicated in an extended bibliographic research. Finally, the OO methodology is applied for the design and implementation of the MPOOST data model. The outcome of the design and the implementation is the first version of the MPOOST data model written using the Java object-oriented programming language. In this way, it is proven that: the relational technology has significant drawbacks which prohibit it from being applied in conceptually demanding information systems; and that object-orientation can fully satisfy the most complex data structuring requirements posed in modern geographic information systems

    Doctor of Philosophy

    Get PDF
    dissertationWith modern computational resources rapidly advancing towards exascale, large-scale simulations useful for understanding natural and man-made phenomena are becoming in- creasingly accessible. As a result, the size and complexity of data representing such phenom- ena are also increasing, making the role of data analysis to propel science even more integral. This dissertation presents research on addressing some of the contemporary challenges in the analysis of vector fields--an important type of scientific data useful for representing a multitude of physical phenomena, such as wind flow and ocean currents. In particular, new theories and computational frameworks to enable consistent feature extraction from vector fields are presented. One of the most fundamental challenges in the analysis of vector fields is that their features are defined with respect to reference frames. Unfortunately, there is no single ""correct"" reference frame for analysis, and an unsuitable frame may cause features of interest to remain undetected, thus creating serious physical consequences. This work develops new reference frames that enable extraction of localized features that other techniques and frames fail to detect. As a result, these reference frames objectify the notion of ""correctness"" of features for certain goals by revealing the phenomena of importance from the underlying data. An important consequence of using these local frames is that the analysis of unsteady (time-varying) vector fields can be reduced to the analysis of sequences of steady (time- independent) vector fields, which can be performed using simpler and scalable techniques that allow better data management by accessing the data on a per-time-step basis. Nevertheless, the state-of-the-art analysis of steady vector fields is not robust, as most techniques are numerical in nature. The residing numerical errors can violate consistency with the underlying theory by breaching important fundamental laws, which may lead to serious physical consequences. This dissertation considers consistency as the most fundamental characteristic of computational analysis that must always be preserved, and presents a new discrete theory that uses combinatorial representations and algorithms to provide consistency guarantees during vector field analysis along with the uncertainty visualization of unavoidable discretization errors. Together, the two main contributions of this dissertation address two important concerns regarding feature extraction from scientific data: correctness and precision. The work presented here also opens new avenues for further research by exploring more-general reference frames and more-sophisticated domain discretizations

    ISCR Annual Report: Fical Year 2004

    Full text link

    Computation in Complex Networks

    Get PDF
    Complex networks are one of the most challenging research focuses of disciplines, including physics, mathematics, biology, medicine, engineering, and computer science, among others. The interest in complex networks is increasingly growing, due to their ability to model several daily life systems, such as technology networks, the Internet, and communication, chemical, neural, social, political and financial networks. The Special Issue “Computation in Complex Networks" of Entropy offers a multidisciplinary view on how some complex systems behave, providing a collection of original and high-quality papers within the research fields of: • Community detection • Complex network modelling • Complex network analysis • Node classification • Information spreading and control • Network robustness • Social networks • Network medicin

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Principles of geographic information systems

    Get PDF
    2nd edition, ©200
    corecore