5 research outputs found

    Object Detection in Multi-view 3D Reconstruction Using Semantic and Geometric Context

    Get PDF

    Brain Disease Detection From EEGS: Comparing Spiking and Recurrent Neural Networks for Non-stationary Time Series Classification

    Get PDF
    Modeling non-stationary time series data is a difficult problem area in AI, due to the fact that the statistical properties of the data change as the time series progresses. This complicates the classification of non-stationary time series, which is a method used in the detection of brain diseases from EEGs. Various techniques have been developed in the field of deep learning for tackling this problem, with recurrent neural networks (RNN) approaches utilising Long short-term memory (LSTM) architectures achieving a high degree of success. This study implements a new, spiking neural network-based approach to time series classification for the purpose of detecting three brain diseases from EEG datasets - epilepsy, alcoholism, and schizophrenia. The performance and training time of the spiking neural network classifier is compared to those of both a baseline RNN-LSTM EEG classifier and the current state-of-the art RNN-LSTM EEG classifier architecture from the relevant literature. The SNN EEG classifier model developed in this study outperforms both the baseline and state of-the-art RNN models in terms of accuracy, and is able to detect all three brain diseases with an accuracy of 100%, while requiring a far smaller number of training data samples than recurrent neural network approaches. This represents the best performance present in the literature for the task of EEG classificatio

    Lidar-based Obstacle Detection and Recognition for Autonomous Agricultural Vehicles

    Get PDF
    Today, agricultural vehicles are available that can drive autonomously and follow exact route plans more precisely than human operators. Combined with advancements in precision agriculture, autonomous agricultural robots can reduce manual labor, improve workflow, and optimize yield. However, as of today, human operators are still required for monitoring the environment and acting upon potential obstacles in front of the vehicle. To eliminate this need, safety must be ensured by accurate and reliable obstacle detection and avoidance systems.In this thesis, lidar-based obstacle detection and recognition in agricultural environments has been investigated. A rotating multi-beam lidar generating 3D point clouds was used for point-wise classification of agricultural scenes, while multi-modal fusion with cameras and radar was used to increase performance and robustness. Two research perception platforms were presented and used for data acquisition. The proposed methods were all evaluated on recorded datasets that represented a wide range of realistic agricultural environments and included both static and dynamic obstacles.For 3D point cloud classification, two methods were proposed for handling density variations during feature extraction. One method outperformed a frequently used generic 3D feature descriptor, whereas the other method showed promising preliminary results using deep learning on 2D range images. For multi-modal fusion, four methods were proposed for combining lidar with color camera, thermal camera, and radar. Gradual improvements in classification accuracy were seen, as spatial, temporal, and multi-modal relationships were introduced in the models. Finally, occupancy grid mapping was used to fuse and map detections globally, and runtime obstacle detection was applied on mapped detections along the vehicle path, thus simulating an actual traversal.The proposed methods serve as a first step towards full autonomy for agricultural vehicles. The study has thus shown that recent advancements in autonomous driving can be transferred to the agricultural domain, when accurate distinctions are made between obstacles and processable vegetation. Future research in the domain has further been facilitated with the release of the multi-modal obstacle dataset, FieldSAFE
    corecore