1,172 research outputs found

    A Sparse Johnson--Lindenstrauss Transform

    Full text link
    Dimension reduction is a key algorithmic tool with many applications including nearest-neighbor search, compressed sensing and linear algebra in the streaming model. In this work we obtain a {\em sparse} version of the fundamental tool in dimension reduction --- the Johnson--Lindenstrauss transform. Using hashing and local densification, we construct a sparse projection matrix with just O~(1ϵ)\tilde{O}(\frac{1}{\epsilon}) non-zero entries per column. We also show a matching lower bound on the sparsity for a large class of projection matrices. Our bounds are somewhat surprising, given the known lower bounds of Ω(1ϵ2)\Omega(\frac{1}{\epsilon^2}) both on the number of rows of any projection matrix and on the sparsity of projection matrices generated by natural constructions. Using this, we achieve an O~(1ϵ)\tilde{O}(\frac{1}{\epsilon}) update time per non-zero element for a (1±ϵ)(1\pm\epsilon)-approximate projection, thereby substantially outperforming the O~(1ϵ2)\tilde{O}(\frac{1}{\epsilon^2}) update time required by prior approaches. A variant of our method offers the same guarantees for sparse vectors, yet its O~(d)\tilde{O}(d) worst case running time matches the best approach of Ailon and Liberty.Comment: 10 pages, conference version

    Toward a unified theory of sparse dimensionality reduction in Euclidean space

    Get PDF
    Let ΦRm×n\Phi\in\mathbb{R}^{m\times n} be a sparse Johnson-Lindenstrauss transform [KN14] with ss non-zeroes per column. For a subset TT of the unit sphere, ε(0,1/2)\varepsilon\in(0,1/2) given, we study settings for m,sm,s required to ensure EΦsupxTΦx221<ε, \mathop{\mathbb{E}}_\Phi \sup_{x\in T} \left|\|\Phi x\|_2^2 - 1 \right| < \varepsilon , i.e. so that Φ\Phi preserves the norm of every xTx\in T simultaneously and multiplicatively up to 1+ε1+\varepsilon. We introduce a new complexity parameter, which depends on the geometry of TT, and show that it suffices to choose ss and mm such that this parameter is small. Our result is a sparse analog of Gordon's theorem, which was concerned with a dense Φ\Phi having i.i.d. Gaussian entries. We qualitatively unify several results related to the Johnson-Lindenstrauss lemma, subspace embeddings, and Fourier-based restricted isometries. Our work also implies new results in using the sparse Johnson-Lindenstrauss transform in numerical linear algebra, classical and model-based compressed sensing, manifold learning, and constrained least squares problems such as the Lasso

    A Sparse Johnson-Lindenstrauss Transform Using Fast Hashing

    Get PDF

    Almost Optimal Unrestricted Fast Johnson-Lindenstrauss Transform

    Full text link
    The problems of random projections and sparse reconstruction have much in common and individually received much attention. Surprisingly, until now they progressed in parallel and remained mostly separate. Here, we employ new tools from probability in Banach spaces that were successfully used in the context of sparse reconstruction to advance on an open problem in random pojection. In particular, we generalize and use an intricate result by Rudelson and Vershynin for sparse reconstruction which uses Dudley's theorem for bounding Gaussian processes. Our main result states that any set of N=exp(O~(n))N = \exp(\tilde{O}(n)) real vectors in nn dimensional space can be linearly mapped to a space of dimension k=O(\log N\polylog(n)), while (1) preserving the pairwise distances among the vectors to within any constant distortion and (2) being able to apply the transformation in time O(nlogn)O(n\log n) on each vector. This improves on the best known N=exp(O~(n1/2))N = \exp(\tilde{O}(n^{1/2})) achieved by Ailon and Liberty and N=exp(O~(n1/3))N = \exp(\tilde{O}(n^{1/3})) by Ailon and Chazelle. The dependence in the distortion constant however is believed to be suboptimal and subject to further investigation. For constant distortion, this settles the open question posed by these authors up to a \polylog(n) factor while considerably simplifying their constructions
    corecore