1,260 research outputs found

    Permission-Based Separation Logic for Multithreaded Java Programs

    Get PDF
    This paper motivates and presents a program logic for reasoning about multithreaded Java-like programs with concurrency primitives such as dynamic thread creation, thread joining and reentrant object monitors. The logic is based on concurrent separation logic. It is the first detailed adaptation of concurrent separation logic to a multithreaded Java-like language. The program logic associates a unique static access permission with each heap location, ensuring exclusive write accesses and ruling out data races. Concurrent reads are supported through fractional permissions. Permissions can be transferred between threads upon thread starting, thread joining, initial monitor entrancies and final monitor exits.\ud This paper presents the basic principles to reason about thread creation and thread joining. It finishes with an outlook how this logic will evolve into a full-fledged verification technique for Java (and possibly other multithreaded languages)

    Permission-Based Separation Logic for Multithreaded Java Programs

    Get PDF
    This paper presents a program logic for reasoning about multithreaded Java-like programs with dynamic thread creation, thread joining and reentrant object monitors. The logic is based on concurrent separation logic. It is the first detailed adaptation of concurrent separation logic to a multithreaded Java-like language. The program logic associates a unique static access permission with each heap location, ensuring exclusive write accesses and ruling out data races. Concurrent reads are supported through fractional permissions. Permissions can be transferred between threads upon thread starting, thread joining, initial monitor entrancies and final monitor exits. In order to distinguish between initial monitor entrancies and monitor reentrancies, auxiliary variables keep track of multisets of currently held monitors. Data abstraction and behavioral subtyping are facilitated through abstract predicates, which are also used to represent monitor invariants, preconditions for thread starting and postconditions for thread joining. Value-parametrized types allow to conveniently capture common strong global invariants, like static object ownership relations. The program logic is presented for a model language with Java-like classes and interfaces, the soundness of the program logic is proven, and a number of illustrative examples are presented

    Teaching Concurrent Software Design: A Case Study Using Android

    Full text link
    In this article, we explore various parallel and distributed computing topics from a user-centric software engineering perspective. Specifically, in the context of mobile application development, we study the basic building blocks of interactive applications in the form of events, timers, and asynchronous activities, along with related software modeling, architecture, and design topics.Comment: Submitted to CDER NSF/IEEE-TCPP Curriculum Initiative on Parallel and Distributed Computing - Core Topics for Undergraduate

    Sound Static Deadlock Analysis for C/Pthreads (Extended Version)

    Full text link
    We present a static deadlock analysis approach for C/pthreads. The design of our method has been guided by the requirement to analyse real-world code. Our approach is sound (i.e., misses no deadlocks) for programs that have defined behaviour according to the C standard, and precise enough to prove deadlock-freedom for a large number of programs. The method consists of a pipeline of several analyses that build on a new context- and thread-sensitive abstract interpretation framework. We further present a lightweight dependency analysis to identify statements relevant to deadlock analysis and thus speed up the overall analysis. In our experimental evaluation, we succeeded to prove deadlock-freedom for 262 programs from the Debian GNU/Linux distribution with in total 2.6 MLOC in less than 11 hours

    Mathematizing C++ concurrency

    Get PDF
    Shared-memory concurrency in C and C++ is pervasive in systems programming, but has long been poorly defined. This motivated an ongoing shared effort by the standards committees to specify concurrent behaviour in the next versions of both languages. They aim to provide strong guarantees for race-free programs, together with new (but subtle) relaxed-memory atomic primitives for high-performance concurrent code. However, the current draft standards, while the result of careful deliberation, are not yet clear and rigorous definitions, and harbour substantial problems in their details. In this paper we establish a mathematical (yet readable) semantics for C++ concurrency. We aim to capture the intent of the current (`Final Committee') Draft as closely as possible, but discuss changes that fix many of its problems. We prove that a proposed x86 implementation of the concurrency primitives is correct with respect to the x86-TSO model, and describe our Cppmem tool for exploring the semantics of examples, using code generated from our Isabelle/HOL definitions. Having already motivated changes to the draft standard, this work will aid discussion of any further changes, provide a correctness condition for compilers, and give a much-needed basis for analysis and verification of concurrent C and C++ programs

    Partial Orders for Efficient BMC of Concurrent Software

    Get PDF
    This version previously deposited at arXiv:1301.1629v1 [cs.LO]The vast number of interleavings that a concurrent program can have is typically identified as the root cause of the difficulty of automatic analysis of concurrent software. Weak memory is generally believed to make this problem even harder. We address both issues by modelling programs' executions with partial orders rather than the interleaving semantics (SC). We implemented a software analysis tool based on these ideas. It scales to programs of sufficient size to achieve first-time formal verification of non-trivial concurrent systems code over a wide range of models, including SC, Intel x86 and IBM Power

    A true positives theorem for a static race detector

    Get PDF
    RacerD is a static race detector that has been proven to be effective in engineering practice: it has seen thousands of data races fixed by developers before reaching production, and has supported the migration of Facebook's Android app rendering infrastructure from a single-threaded to a multi-threaded architecture. We prove a True Positives Theorem stating that, under certain assumptions, an idealized theoretical version of the analysis never reports a false positive. We also provide an empirical evaluation of an implementation of this analysis, versus the original RacerD. The theorem was motivated in the first case by the desire to understand the observation from production that RacerD was providing remarkably accurate signal to developers, and then the theorem guided further analyzer design decisions. Technically, our result can be seen as saying that the analysis computes an under-approximation of an over-approximation, which is the reverse of the more usual (over of under) situation in static analysis. Until now, static analyzers that are effective in practice but unsound have often been regarded as ad hoc; in contrast, we suggest that, in the future, theorems of this variety might be generally useful in understanding, justifying and designing effective static analyses for bug catching
    • …
    corecore