5 research outputs found

    Performance Prediction of Cloud-Based Big Data Applications

    Get PDF
    Big data analytics have become widespread as a means to extract knowledge from large datasets. Yet, the heterogeneity and irregular- ity usually associated with big data applications often overwhelm the existing software and hardware infrastructures. In such con- text, the exibility and elasticity provided by the cloud computing paradigm o er a natural approach to cost-e ectively adapting the allocated resources to the application’s current needs. However, these same characteristics impose extra challenges to predicting the performance of cloud-based big data applications, a key step to proper management and planning. This paper explores three modeling approaches for performance prediction of cloud-based big data applications. We evaluate two queuing-based analytical models and a novel fast ad hoc simulator in various scenarios based on di erent applications and infrastructure setups. The three ap- proaches are compared in terms of prediction accuracy, nding that our best approaches can predict average application execution times with 26% relative error in the very worst case and about 7% on average

    Software development for analysis of stochastic petri nets using transfer functions

    Get PDF
    This thesis research is an implementation of a closed-form analytical technique for study, evaluation and analysis of Stochastic Petri Nets (SPN). The technique is based on a theorem that an isomorphism exists between an SPN and a Markov Chain. The procedure comprises five main steps: reachability graph generation of the underlying Petri net, transformation of the reachability graph to a state machine Petri net, calculation of transfer functions, computation of equivalent transfer functions via Mason\u27s rule, and computation of performance parameters of the SPN model from the equivalent transfer functions and their derivatives. The software is developed in UNIX using C and applied to various SPN models. Future research includes implementation of Mason\u27s rule for complex cases and symbolic derivation of equivalent transfer functions

    The complexity of Petri net transformations

    Get PDF
    Bibliography: pages 124-127.This study investigates the complexity of various reduction and synthesis Petri net transformations. Transformations that preserve liveness and boundedness are considered. Liveness and boundedness are possibly the two most important properties in the analysis of Petri nets. Unfortunately, although decidable, determining such properties is intractable in the general Petri net. The thesis shows that the complexity of these properties imposes limitations on the power of any reduction transformations to solve the problems of liveness and boundedness. Reduction transformations and synthesis transformations from the literature are analysed from an algorithmic point of view and their complexity established. Many problems regarding the applicability of the transformations are shown to be intractable. For reduction transformations this confirms the limitations of such transformations on the general Petri net. The thesis suggests that synthesis transformations may enjoy better success than reduction transformations, and because of problems establishing suitable goals, synthesis transformations are best suited to interactive environments. The complexity of complete reducibility, by reduction transformation, of certain classes of Petri nets, as proposed in the literature, is also investigated in this thesis. It is concluded that these transformations are tractable and that reduction transformation theory can provide insight into the analysis of liveness and boundedness problems, particularly in subclasses of Petri nets

    Discrete Event Systems: Models and Applications; Proceedings of an IIASA Conference, Sopron, Hungary, August 3-7, 1987

    Get PDF
    Work in discrete event systems has just begun. There is a great deal of activity now, and much enthusiasm. There is considerable diversity reflecting differences in the intellectual formation of workers in the field and in the applications that guide their effort. This diversity is manifested in a proliferation of DEM formalisms. Some of the formalisms are essentially different. Some of the "new" formalisms are reinventions of existing formalisms presented in new terms. These "duplications" reveal both the new domains of intended application as well as the difficulty in keeping up with work that is published in journals on computer science, communications, signal processing, automatic control, and mathematical systems theory - to name the main disciplines with active research programs in discrete event systems. The first eight papers deal with models at the logical level, the next four are at the temporal level and the last six are at the stochastic level. Of these eighteen papers, three focus on manufacturing, four on communication networks, one on digital signal processing, the remaining ten papers address methodological issues ranging from simulation to computational complexity of some synthesis problems. The authors have made good efforts to make their contributions self-contained and to provide a representative bibliography. The volume should therefore be both accessible and useful to those who are just getting interested in discrete event systems
    corecore