18,928 research outputs found

    Software project management with ISO/IEC 29110

    Get PDF
    The recently published ISO/IEC 29110 standard Lifecycle profiles for Very Small Entities has at its core a Management and Engineering Guide [1] which are targeted at very small entities (enterprises, organizations, departments or projects) having up to 25 people [2], to assist them unlock the potential benefits of using standards which are specifically designed to address their needs. This paper discusses the role and structure of Project Management in the emerging ISO/IEC 29110 standard Software Process Lifecycles for Very Small Entities as well as its practical implication. This paper will also focus on the design and development of project management support documentation and their associated usage in early trials of ISO/IEC 29110

    Experience Management for Very Small Entities: Improving the Copy-paste Model

    No full text
    International audienceThe emerging ISO/IEC 29110 standard Lifecycle profiles for Very Small Entities is developing a "Generic" profile group applicable to a vast majority of very small entities (enterprises, organizations, departments or projects) having up to 25 people, that do not develop critical software and have typical situational factors. The developers of the standard, ISO/IEC JCT1/SC7 Working Group 24, recommended the use of pilot projects as a mean to trial the adoption of the new International standard in small organizations. Accordingly an ISO/IEC 29110 pilot project has been established between the Software Engineering group of Brest University and a 14-person company with the aim of establishing an engineering discipline for a new web-based project. As the project proceeded, it became apparent that the current set of ISO/IEC 29110 documents describing a first profile, the Basic profile, was not sufficient to sustain this VSE in its SE activities. What was needed was to organize the knowledge contained in them. The results of this pilot study are providing VSEs with a simple Experience Management system which is compatible with the emerging ISO/IEC 29110 standard. It is founded on two principles: 1) keeping the Content Management System-based Experience Management infrastructure as simple as possible, structured with the decomposition of the ISO/IEC 29110 processes; and 2) the requirement of Experience Management dedicated processes, taken from D. Schon's work on the reflection-on-action approach to learning

    Evaluating management sentiment towards ISO/IEC 29110 in very small software development companies

    Get PDF
    This paper presents the results of a set of interviews with senior management in a series of very small software development companies, which were conducted to gauge their opinion, attitude and sentiment towards the of new standard, ISO/IEC 29110 Life Cycle Profiles for Very Small Entities (VSEs). This paper serves as a roadmap for both researchers wishing to understand the issues of process standards adoption by very small companies and also for the software process standards community

    Managerial commitment towards SPI in small and very small enterprises

    Get PDF
    This paper compares and contrasts the results of two similar studies into the software process practices in Irish Small and Very Small Enterprises. The first study contains rich findings in relation to the role and influence of managerial experience and style, with particular respect to the company founder and software development managers in small to medium seized enterprises (SMEs), whilst the second study contains extensive findings in relation to people and management involvement / commitment and SPI goal planning in very small enterprises (VSEs). By combining these results of these two studies of Irish SMEs/VSEs we can develop a rich picture of managerial commitment towards SPI and in particular explore the similarities between Small and Very Small Enterprises

    Understanding the perception of very small software companies towards the adoption of process standards

    Get PDF
    This paper is concerned with understanding the issues that affect the adoption of software process standards by Very Small Entities (VSEs), there needs from process standards and there willingness to engage with the new ISO/IEC 29110 standard in particular. In order to achieve this goal, a series of industry data collection studies were undertaken with a collection of VSEs. A twin track approach of a qualitative data collection (interviews and focus groups) and quantitative data collection (questionnaire), with data analysis being completed separately and finally results merged, using the coding mechanisms of grounded theory. This paper serves as a roadmap for both researchers wishing to understand the issues of process standards adoption by very small companies and also for the software process standards community

    Construction informatics in Turkey: strategic role of ICT and future research directions

    Get PDF
    Construction Informatics deals with subjects ranging from strategic management of ICTs to interoperability and information integration in the construction industry. Studies on defining research directions for Construction Informatics have a history over 20 years. The recent studies in the area highlight the priority themes for Construction Informatics research as interoperability, collaboration support, intelligent sites and knowledge sharing. In parallel, today it is widely accepted in the Architecture/Engineering/Construction (AEC) industry that ICT is becoming a strategic asset for any organisation to deliver business improvement and achieve sustainable competitive advantage. However, traditionally the AEC industry has approached investing in ICT with a lack of strategic focus and low level of priority to the business. This paper presents a recent study from Turkey that is focused on two themes. The first theme investigates the strategic role of ICT implementations from an industrial perspective, and explores if organisations within the AEC industry view ICT as a strategic resource for their business practice. The second theme investigates the ‘perspective of academia’ in terms of future research directions of Construction Informatics. The results of the industrial study indicates that ICT is seen as a value-adding resource, but a shift towards the recognition of the importance of ICT in terms of value adding in winning work and achieving strategic competitive advantage is observed. On the other hand, ICT Training is found to be the theme of highest priority from the academia point of view

    Generic PLM system for SMEs: Application to an equipment manufacturer

    Get PDF
    For several years, digital engineering has increasingly taken a more important place in the strategic issues of mechanical engineering companies. Our proposition is an approach that enables technical data to be managed and used throughout the product life-cycle. This approach aims to provide assistance for costing, development and industrialization of the product, and for the capitalization, the reuse and the extension of fundamental knowledge. This approach has been experimented within several companies. This paper presents the case in a company environment that designs and produces families of ship equipment parts

    Construction informatics in Turkey: strategic role of ICT and future research directions

    Get PDF
    Construction Informatics deals with subjects ranging from strategic management of ICTs to interoperability and information integration in the construction industry. Studies on defining research directions for Construction Informatics have a history over 20 years. The recent studies in the area highlight the priority themes for Construction Informatics research as interoperability, collaboration support, intelligent sites and knowledge sharing. In parallel, today it is widely accepted in the Architecture/Engineering/Construction (AEC) industry that ICT is becoming a strategic asset for any organisation to deliver business improvement and achieve sustainable competitive advantage. However, traditionally the AEC industry has approached investing in ICT with a lack of strategic focus and low level of priority to the business. This paper presents a recent study from Turkey that is focused on two themes. The first theme investigates the strategic role of ICT implementations from an industrial perspective, and explores if organisations within the AEC industry view ICT as a strategic resource for their business practice. The second theme investigates the ‘perspective of academia’ in terms of future research directions of Construction Informatics. The results of the industrial study indicates that ICT is seen as a value-adding resource, but a shift towards the recognition of the importance of ICT in terms of value adding in winning work and achieving strategic competitive advantage is observed. On the other hand, ICT Training is found to be the theme of highest priority from the academia point of view

    Requirements engineering for computer integrated environments in construction

    Get PDF
    A Computer Integrated Environment (CIE) is the type of innovative integrated information system that helps to reduce fragmentation and enables the stakeholders to collaborate together in business. Researchers have observed that the concept of CIE has been the subject of research for many years but the uptake of this technology has been very limited because of the development of the technology and its effective implementation. Although CIE is very much valued by both industrialists and academics, the answers to the question of how to develop and how to implement it are still not clear. The industrialists and researchers conveyed that networking, collaboration, information sharing and communication will become popular and critical issues in the future, which can be managed through CIE systems. In order for successful development of the technology, successful delivery, and effective implementation of user and industry-oriented CIE systems, requirements engineering seems a key parameter. Therefore, through experiences and lessons learnt in various case studies of CIE systems developments, this book explains the development of a requirements engineering framework specific to the CIE system. The requirements engineering process that has been developed in the research is targeted at computer integrated environments with a particular interest in the construction industry as the implementation field. The key features of the requirements engineering framework are the following: (1) ready-to-use, (2) simple, (3) domain specific, (4) adaptable and (5) systematic, (6) integrated with the legacy systems. The method has three key constructs: i) techniques for requirements development, which includes the requirement elicitation, requirements analysis/modelling and requirements validation, ii) requirements documentation and iii) facilitating the requirements management. It focuses on system development methodologies for the human driven ICT solutions that provide communication, collaboration, information sharing and exchange through computer integrated environments for professionals situated in discrete locations but working in a multidisciplinary and interdisciplinary environment. The overview for each chapter of the book is as follows; Chapter 1 provides an overview by setting the scene and presents the issues involved in requirements engineering and CIE (Computer Integrated Environments). Furthermore, it makes an introduction to the necessity for requirements engineering for CIE system development, experiences and lessons learnt cumulatively from CIE systems developments that the authors have been involved in, and the process of the development of an ideal requirements engineering framework for CIE systems development, based on the experiences and lessons learnt from the multi-case studies. Chapter 2 aims at building up contextual knowledge to acquire a deeper understanding of the topic area. This includes a detailed definition of the requirements engineering discipline and the importance and principles of requirements engineering and its process. In addition, state of the art techniques and approaches, including contextual design approach, the use case modelling, and the agile requirements engineering processes, are explained to provide contextual knowledge and understanding about requirements engineering to the readers. After building contextual knowledge and understanding about requirements engineering in chapter 2, chapter 3 attempts to identify a scope and contextual knowledge and understanding about computer integrated environments and Building Information Modelling (BIM). In doing so, previous experiences of the authors about systems developments for computer integrated environments are explained in detail as the CIE/BIM case studies. In the light of contextual knowledge gained about requirements engineering in chapter 2, in order to realize the critical necessity of requirements engineering to combine technology, process and people issues in the right balance, chapter 4 will critically evaluate the requirements engineering activities of CIE systems developments that are explained in chapter 3. Furthermore, to support the necessity of requirements engineering for human centred CIE systems development, the findings from semi-structured interviews are shown in a concept map that is also explained in this chapter. In chapter 5, requirements engineering is investigated from different angles to pick up the key issues from discrete research studies and practice such as traceability through process and product modelling, goal-oriented requirements engineering, the essential and incidental complexities in requirements models, the measurability of quality requirements, the fundamentals of requirements engineering, identifying and involving the stakeholders, reconciling software requirements and system architectures and barriers to the industrial uptake of requirements engineering. In addition, a comprehensive research study measuring the success of requirements engineering processes through a set of evaluation criteria is introduced. Finally, the key issues and the criteria are comparatively analyzed and evaluated in order to match each other and confirm the validity of the criteria for the evaluation and assessment of the requirements engineering implementation in the CIE case study projects in chapter 7 and the key issues will be used in chapter 9 to support the CMM (Capability Maturity Model) for acceptance and wider implications of the requirements engineering framework to be proposed in chapter 8. Chapter 6 explains and particularly focuses on how the requirements engineering activities in the case study projects were handled by highlighting strengths and weaknesses. This will also include the experiences and lessons learnt from these system development practices. The findings from these developments will also be utilized to support the justification of the necessity of a requirements engineering framework for the CIE systems developments. In particular, the following are addressed. ‱ common and shared understanding in requirements engineering efforts, ‱ continuous improvement, ‱ outputs of requirement engineering ‱ reflections and the critical analysis of the requirements engineering approaches in these practices. The premise of chapter 7 is to evaluate and assess the requirements engineering approaches in the CIE case study developments from multiple viewpoints in order to find out the strengths and the weaknesses in these requirements engineering processes. This evaluation will be mainly based on the set of criteria developed by the researchers and developers in the requirements engineering community in order to measure the success rate of the requirements engineering techniques after their implementation in the various system development projects. This set of criteria has already been introduced in chapter 5. This critical assessment includes conducting a questionnaire based survey and descriptive statistical analysis. In chapter 8, the requirements engineering techniques tested in the CIE case study developments are composed and compiled into a requirements engineering process in the light of the strengths and the weaknesses identified in the previous chapter through benchmarking with a Capability Maturity Model (CMM) to ensure that it has the required level of maturity for implementation in the CIE systems developments. As a result of this chapter, a framework for a generic requirements engineering process for CIE systems development will be proposed. In chapter 9, the authors will discuss the acceptance and the wider implications of the proposed framework of requirements engineering process using the CMM from chapter 8 and the key issues from chapter 5. Chapter 10 is the concluding chapter and it summarizes the findings and brings the book to a close with recommendations for the implementation of the Proposed RE framework and also prescribes a guideline as a way forward for better implementation of requirements engineering for successful developments of the CIE systems in the future
    • 

    corecore