4 research outputs found

    Continuous Learning of the Structure of Bayesian Networks: A Mapping Study

    Get PDF
    Bayesian networks can be built based on knowledge, data, or both. Independent of the source of information used to build the model, inaccuracies might occur or the application domain might change. Therefore, there is a need to continuously improve the model during its usage. As new data are collected, algorithms to continuously incorporate the updated knowledge can play an essential role in this process. In regard to the continuous learning of the Bayesian network’s structure, the current solutions are based on its structural refinement or adaptation. Recent researchers aim to reduce complexity and memory usage, allowing to solve complex and large-scale practical problems. This study aims to identify and evaluate solutions for the continuous learning of the Bayesian network’s structures, as well as to outline related future research directions. Our attention remains on the structures because the accurate parameters are completely useless if the structure is not representative

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    A Skeleton-Based Approach to Learning Bayesian Networks From Data

    No full text
    Various different algorithms for learning Bayesian networks from data have been proposed to date. In this paper, we adopt a novel approach that combines the main advantages of these algorithms yet avoids their difficulties. In our approach, first an undirected graph, termed the skeleton, is constructed from the data, using zero- and first-order dependence tests. Then, a search algorithm is employed that builds upon a quality measure to find the best network from the search space that is defined by the skeleton. To corroborate the feasibility of our approach, we present the experimental results that we obtained on various different datasets generated from real-world networks. Within the experimental setting, we further study the reduction of the search space that is achieved by the skeleton
    corecore