12 research outputs found

    Application of artificial pneumatic rubber muscles to a human friendly robot

    Get PDF
    When robots work together with a human or contact with a human body directly in such as a medical welfare field, in order to avoid an accident from crash and so on, a flexibility is required for the robot. The purpose of this study is to realize a safe mechanism for a human-friendly robot. In this paper, the structure and the fundamental characteristics of a pneumatic rubber muscle and soft mechanism are described, and then the structure and the fundamental operation of the developed soft hand are shown. Finally, the shaking hands is discussed as an example of force communication tasks between a robot and a human. </p

    A two DoF finger for a biomechatronic artificial hand

    Get PDF
    Current prosthetic hands are basically simple grippers with one or two degrees of freedom, which barely restore the capability of the thumb-index pinch. Although most amputees consider this performance as acceptable for usual tasks, there is ample room for improvement by exploiting recent progresses in mechatronics design and technology. We are developing a novel prosthetic hand featured by multiple degrees of freedom, tactile sensing capabilities, and distributed control. Our main goal is to pursue an integrated design approach in order to fulfill critical requirements such as cosmetics, controllability, low weight, low energy consumption and noiselessness. This approach can be synthesized by the definition "biomechatronic design", which means developing mechatronic systems inspired by living beings and able to work harmoniously with them. This paper describes the first implementation of one single finger of a future biomechatronic hand. The finger has a modular design, which allows to obtain hands with different degrees of freedom and grasping capabilities. Current developments include the implementation of a hand comprising three fingers (opposing thumb, index and middle) and an embedded controller

    Mechanical engineering challenges in humanoid robotics

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 36-39).Humanoid robots are artificial constructs designed to emulate the human body in form and function. They are a unique class of robots whose anthropomorphic nature renders them particularly well-suited to interact with humans in a world designed for humans. The present work examines a subset of the plethora of engineering challenges that face modem developers of humanoid robots, with a focus on challenges that fall within the domain of mechanical engineering. The challenge of emulating human bipedal locomotion on a robotic platform is reviewed in the context of the evolutionary origins of human bipedalism and the biomechanics of walking and running. Precise joint angle control bipedal robots and passive-dynamic walkers, the two most prominent classes of modem bipedal robots, are found to have their own strengths and shortcomings. An integration of the strengths from both classes is likely to characterize the next generation of humanoid robots. The challenge of replicating human arm and hand dexterity with a robotic system is reviewed in the context of the evolutionary origins and kinematic structure of human forelimbs. Form-focused design and function-focused design, two distinct approaches to the design of modem robotic arms and hands, are found to have their own strengths and shortcomings. An integration of the strengths from both approaches is likely to characterize the next generation of humanoid robots.by Peter Guang Yi Lu.S.B

    Multi-Day Analysis of Surface and Intramuscular EMG for Prosthetic Control

    Get PDF

    Dexterous actuation

    Get PDF
    Methods that have been developed for actuation system evaluation are normally generic, and primarily intended to facilitate actuator selection. Here, we address specifically those engineering devices that exhibit multiple-degree-of-freedom motions under space and weight constraints, and focus on the evaluation of the total actuation solution. We suggest a new measure that we provisionally call ‘Actuation Dexterity’, which interrogates the effectiveness of this total solution and serves as a design support tool. The new concept is developed in the context of artificial hands, and the approach is based on the review and analysis of thirty-six different artificial hand projects described in the literature. We have identified forty-eight unique evaluation criteria that are relevant to the actuation of devices of this type, and have devised a scoring method that permits the quantification of the actuation dexterity of a given device. We have tested this approach by evaluating and quantifying the actuation dexterity of five different artificial hands from the literature. Finally, we discuss the implications of this approach to the design process, and the portability of the approach between different device types.peer-reviewe
    corecore