3 research outputs found

    Analysis of PFC Buck-Boost Converter Fed PMBLDC Motor Drive Systems

    Get PDF
    Electric motors influence almost every aspect of modern life. Refrigerators, vacuum cleaners, air conditioners, fans, computer hard drives, automatic vehicle windows, & a number of other household products & devices employ electric motors to convert electrical energy into usable mechanical energy. Electric motors power a wide range of industrial processes in addition to powering residential appliances. Brushless DC (BLDC) motor drives have grown in popularity in recent years due to their suitability for a wide range of low and medium power applications such as household appliances, medical equipment, position actuators, Heating, Ventilation, and Air Conditioning (HVAC), motion control, and transportation. These drives have great efficiency, dependability, durability, and outstanding performance across a wide range of speed control. The BLDC motor cannot be connected directly to the supply and must be driven by a drive consisting of VSI controlled by an electronic commutation system. Harmonics are introduced into the main power supply and power factor issue by the electronic commutation system and rectification procedure. Power Factor Correction (PFC) converters are used to improve the power quality and power factor of the alternating current mains

    A Single-Stage LED Driver Based on ZCDS Class-E Current-Driven Rectifier as a PFC for Street-Lighting Applications

    Get PDF
    This paper presents a light-emitting diode (LED) driver for street-lighting applications that uses a resonant rectifier as a power-factor corrector (PFC). The PFC semistage is based on a zero-current and zero-derivative-switching (ZCDS) Class-E current-driven rectifier, and the LED driver semistage is based on a zero-voltage-switching (ZVS) Class-D LLC resonant converter that is integrated into a single-stage topology. To increase the conduction angle of the bridge-rectifier diodes current and to decrease the current harmonics that are injected in the utility line, the ZCDS Class-E rectifier is placed between the bridge-rectifier and a dc-link capacitor. The ZCDS Class-E rectifieris driven by a high-frequency current source, which is obtained from a square-wave output voltage of the ZVS Class-D LLC resonant converter using a matching network. Additionally, the proposed converter has a soft-switching characteristic that reduces switching losses and switching noise. A prototype for a 150-W LED street light has been developed and tested to evaluate the performance of the proposed approach. The proposed LED driver had a high efficiency (>91%), a high PF (>0.99), and a low total harmonic distortion (THD i <; 8%) under variation of the utility-line input voltage from 180 to 250 V rms . These experimental results demonstrate the feasibility of the proposed LED scheme

    Magnetic Integration Techniques for Resonant Converters

    Get PDF
    This thesis sets out a series of new transformer topologies for magnetic integration in different resonant converters. Resonant converters like LLC converters require a high number of magnetic components, leading to low power density and high cost. These magnetic components can usually be integrated into a single transformer to increase power density, efficiency, manufacturing simplicity and to reduce cost. This strategy is known as integrated transformer (IT). The work described in this thesis has sought to deliver improvements in implementing this strategy. The benefits of resonant converters compared to pulse-width-modulated (PWM) converters are discussed. To show the drawbacks of PWM converters, two hard-switched DC-DC converters and two soft-switched DC-DC converters using state-of-the-art wide bandgap (WBG) gallium nitride devices are constructed and investigated. The LLC resonant converter is fully discussed for unidirectional and bidirectional applications. The different techniques for magnetic integration that can be applied to the LLC resonant converter are reviewed. Amongst these techniques, the inserted-shunt integrated transformers, which have gained popularity recently, are made a focus of the thesis. In general, the important challenges concerning the inserted-shunt integrated transformers are the need for bespoke material for the shunt, unwanted high leakage inductance on the secondary side, and that integrated magnetics are not usually suitable for bidirectional converters such as CLLLC converters. Two new topologies (IT1 and IT2) for inserted-shunt integrated transformers are presented that do not need bespoke material for the shunt and can be constructed from materials available commercially in large and small quantities. However, the manufacturing of these proposed topologies is challenging since magnetic shunts are made by joining several smaller magnetic pieces to form a segmented piece. A further new topology (IT3) is presented that not only does not need bespoke material for the shunt but also benefits from simple manufacturing. However, inserted-shunt integrated transformer, including all three proposed topologies (IT1-IT3), still suffer from increased leakage inductance on the secondary side, leading the control and design of the resonant converters to difficulty. Another topology (IT4) is therefore proposed that can be constructed easily with commercially available materials and does not increase the leakage inductance on the secondary side. However, all four proposed topologies (IT1-IT4) and other topologies with an inserted-shunt are not suitable for use in bidirectional LLC-type resonant converters when different primary and secondary leakage inductances are needed, such as where variable gain is required. Finally, a topology (IT5) is proposed that can be used in bidirectional LLC-type converters while it still benefits from simple manufacturing and using commercially available materials. All the proposed topologies (IT1-IT5) are discussed in detail and their design guidelines and modelling are provided. The theoretical analysis is confirmed by finite-element (FEM) analysis and experimental results. A unidirectional LLC resonant converter and a bidirectional CLLLC resonant converter are implemented to investigate the performance of the proposed integrated transformers (IT1-IT5) in practice. It is shown that the converters can operate properly while all their magnetic components are integrated into the proposed transformers
    corecore