6,858 research outputs found

    A Single-Query Manipulation Planner

    Full text link
    In manipulation tasks, a robot interacts with movable object(s). The configuration space in manipulation planning is thus the Cartesian product of the configuration space of the robot with those of the movable objects. It is the complex structure of such a "Composite Configuration Space" that makes manipulation planning particularly challenging. Previous works approximate the connectivity of the Composite Configuration Space by means of discretization or by creating random roadmaps. Such approaches involve an extensive pre-processing phase, which furthermore has to be re-done each time the environment changes. In this paper, we propose a high-level Grasp-Placement Table similar to that proposed by Tournassoud et al. (1987), but which does not require any discretization or heavy pre-processing. The table captures the potential connectivity of the Composite Configuration Space while being specific only to the movable object: in particular, it does not require to be re-computed when the environment changes. During the query phase, the table is used to guide a tree-based planner that explores the space systematically. Our simulations and experiments show that the proposed method enables improvements in both running time and trajectory quality as compared to existing approaches.Comment: 8 pages, 7 figures, 1 tabl

    A Certified-Complete Bimanual Manipulation Planner

    Full text link
    Planning motions for two robot arms to move an object collaboratively is a difficult problem, mainly because of the closed-chain constraint, which arises whenever two robot hands simultaneously grasp a single rigid object. In this paper, we propose a manipulation planning algorithm to bring an object from an initial stable placement (position and orientation of the object on the support surface) towards a goal stable placement. The key specificity of our algorithm is that it is certified-complete: for a given object and a given environment, we provide a certificate that the algorithm will find a solution to any bimanual manipulation query in that environment whenever one exists. Moreover, the certificate is constructive: at run-time, it can be used to quickly find a solution to a given query. The algorithm is tested in software and hardware on a number of large pieces of furniture.Comment: 12 pages, 7 figures, 1 tabl

    Task planning using physics-based heuristics on manipulation actions

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In order to solve mobile manipulation problems, the efficient combination of task and motion planning is usually required. Moreover, the incorporation of physics-based information has recently been taken into account in order to plan the tasks in a more realistic way. In the present paper, a task and motion planning framework is proposed based on a modified version of the Fast-Forward task planner that is guided by physics-based knowledge. The proposal uses manipulation knowledge for reasoning on symbolic literals (both in offline and online modes) taking into account geometric information in order to evaluate the applicability as well as feasibility of actions while evaluating the heuristic cost. It results in an efficient search of the state space and in the obtention of low-cost physically-feasible plans. The proposal has been implemented and is illustrated with a manipulation problem consisting of a mobile robot and some fixed and manipulatable objects.Peer ReviewedPostprint (author's final draft

    Contingent task and motion planning under uncertainty for human–robot interactions

    Get PDF
    Manipulation planning under incomplete information is a highly challenging task for mobile manipulators. Uncertainty can be resolved by robot perception modules or using human knowledge in the execution process. Human operators can also collaborate with robots for the execution of some difficult actions or as helpers in sharing the task knowledge. In this scope, a contingent-based task and motion planning is proposed taking into account robot uncertainty and human–robot interactions, resulting a tree-shaped set of geometrically feasible plans. Different sorts of geometric reasoning processes are embedded inside the planner to cope with task constraints like detecting occluding objects when a robot needs to grasp an object. The proposal has been evaluated with different challenging scenarios in simulation and a real environment.Postprint (published version
    • …
    corecore