7,232 research outputs found

    Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration in mmWave Cellular Networks

    Get PDF
    MmWave communications are expected to play a major role in the Fifth generation of mobile networks. They offer a potential multi-gigabit throughput and an ultra-low radio latency, but at the same time suffer from high isotropic pathloss, and a coverage area much smaller than the one of LTE macrocells. In order to address these issues, highly directional beamforming and a very high-density deployment of mmWave base stations were proposed. This Thesis aims to improve the reliability and performance of the 5G network by studying its tight and seamless integration with the current LTE cellular network. In particular, the LTE base stations can provide a coverage layer for 5G mobile terminals, because they operate on microWave frequencies, which are less sensitive to blockage and have a lower pathloss. This document is a copy of the Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorzi. It will propose an LTE-5G tight integration architecture, based on mobile terminals' dual connectivity to LTE and 5G radio access networks, and will evaluate which are the new network procedures that will be needed to support it. Moreover, this new architecture will be implemented in the ns-3 simulator, and a thorough simulation campaign will be conducted in order to evaluate its performance, with respect to the baseline of handover between LTE and 5G.Comment: Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorz

    Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration

    Full text link
    Communications at frequencies above 10 GHz (the mmWave band) are expected to play a major role for the next generation of cellular networks (5G), because of the potential multi-gigabit, ultra-low latency performance of this technology. mmWave frequencies however suffer from very high isotropic pathloss, which may result in cells with a much smaller coverage area than current LTE macrocells. High directionality techniques will be used to improve signal quality and extend coverage area, along with a high density deployment of mmWave base stations (BS). However, when propagation conditions are hard and it is difficult to provide high quality coverage with mmWave BS, it is necessary to rely on previous generation LTE base stations, which make use of lower frequencies (900 MHz - 3.5 GHz), which are less sensitive to blockage and experience lower pathloss. In order to provide ultra-reliable services to mobile users there is a need for network architectures that tightly and seamlessly integrate the LTE and mmWave Radio Access Technologies. In this paper we will present two possible alternatives for this integration and show how simulation tools can be used to assess and compare their performance.Comment: This paper was accepted for presentation at the ninth EAI SIMUtools 2016 conference, August 22 - 23, 2016, Prague, Czech Republi

    End-to-End Simulation of 5G mmWave Networks

    Full text link
    Due to its potential for multi-gigabit and low latency wireless links, millimeter wave (mmWave) technology is expected to play a central role in 5th generation cellular systems. While there has been considerable progress in understanding the mmWave physical layer, innovations will be required at all layers of the protocol stack, in both the access and the core network. Discrete-event network simulation is essential for end-to-end, cross-layer research and development. This paper provides a tutorial on a recently developed full-stack mmWave module integrated into the widely used open-source ns--3 simulator. The module includes a number of detailed statistical channel models as well as the ability to incorporate real measurements or ray-tracing data. The Physical (PHY) and Medium Access Control (MAC) layers are modular and highly customizable, making it easy to integrate algorithms or compare Orthogonal Frequency Division Multiplexing (OFDM) numerologies, for example. The module is interfaced with the core network of the ns--3 Long Term Evolution (LTE) module for full-stack simulations of end-to-end connectivity, and advanced architectural features, such as dual-connectivity, are also available. To facilitate the understanding of the module, and verify its correct functioning, we provide several examples that show the performance of the custom mmWave stack as well as custom congestion control algorithms designed specifically for efficient utilization of the mmWave channel.Comment: 25 pages, 16 figures, submitted to IEEE Communications Surveys and Tutorials (revised Jan. 2018

    Wireless Networking for Vehicle to Infrastructure Communication and Automatic Incident Detection

    Get PDF
    Vehicular wireless communication has recently generated wide interest in the area of wireless network research. Automatic Incident Detection (AID), which is the recent focus of research direction in Intelligent Transportation System (ITS), aims to increase road safety. These advances in technology enable traffic systems to use data collected from vehicles on the road to detect incidents. We develop an automatic incident detection method that has a significant active road safety application for alerting drivers about incidents and congestion. Our method for detecting traffic incidents in a highway scenario is based on the use of distance and time for changing lanes along with the vehicle speed change over time. Numerical results obtained from simulating our automatic incident detection technique suggest that our incident detection rate is higher than that of other techniques such as integrated technique. probabilistic technique and California Algorithm. We also propose a technique to maximize the number of vehicles aware of Road Side Units (RSUs) in order to enhance the accuracy of our AID technique. In our proposed Method. IEEE 802.11 standard is used at RSUs with multiple antennas to assign each lane a specific channel. To validate our proposed approach. we present both analytical and simulation scenarios. The empirical values which are obtained from both analytical and simulation results have been compared to show their consistency. Results indicate that the IEEE 802.11 standard with its beaconing mechanism can be successfully used for Vehicle to Infrastructure (V2I) communications

    Location-aided multi-user beamforming for 60 GHz WPAN systems

    Get PDF

    Katakan tidak pada rasuah

    Get PDF
    Isu atau masalah rasuah menjadi topik utama sama ada di peringkat antarabangsa mahupun di peringkat dalam negara. Pertubuhan Bangsa- bangsa Bersatu menegaskan komitmen komuniti antarabangsa bertegas untuk mencegah dan mengawal rasuah melalui buku bertajuk United Nations Convention against Corruption. Hal yang sama berlaku di Malaysia. Melalui pernyataan visi oleh mantan Perdana Menteri Malaysia, Tun Dr. Mahathir bin Mohamed memberikan indikasi bahawa kerajaan Malaysia komited untuk mencapai aspirasi agar Malaysia dikenali kerana integriti dan bukannya rasuah. Justeru, tujuan penulisan bab ini adalah untuk membincangkan rasuah dari beberapa sudut termasuk perbincangan dari sudut agama Islam, faktor-faktor berlakunya gejala rasuah, dan usaha-usaha yang dijalankan di Malaysia untuk membanteras gejala rasuah. Perkara ini penting bagi mengenalpasti penjawat awam menanamkan keyakinan dalam melaksanakan tanggungjawab dengan menghindari diri daripada rasuah agar mereka sentiasa peka mengutamakan kepentingan awam
    • …
    corecore