219 research outputs found

    A Simulation of Oblivious Multi-Head One-Way Finite Automata by Real-Time Cellular Automata

    Full text link
    In this paper, we present the simulation of a simple, yet significantly powerful, sequential model by cellular automata. The simulated model is called oblivious multi-head one-way finite automata and is characterized by having its heads moving only forward, on a trajectory that only depends on the length of the input. While the original finite automaton works in linear time, its corresponding cellular automaton performs the same task in real time, that is, exactly the length of the input. Although not truly a speed-up, the simulation may be interesting and reminds us of the open question about the equivalence of linear and real times on cellular automata.Comment: Journ\'ees Automates Cellulaires 2010, Turku : Finland (2010

    Proceedings of JAC 2010. Journées Automates Cellulaires

    Get PDF
    The second Symposium on Cellular Automata “Journ´ees Automates Cellulaires” (JAC 2010) took place in Turku, Finland, on December 15-17, 2010. The first two conference days were held in the Educarium building of the University of Turku, while the talks of the third day were given onboard passenger ferry boats in the beautiful Turku archipelago, along the route Turku–Mariehamn–Turku. The conference was organized by FUNDIM, the Fundamentals of Computing and Discrete Mathematics research center at the mathematics department of the University of Turku. The program of the conference included 17 submitted papers that were selected by the international program committee, based on three peer reviews of each paper. These papers form the core of these proceedings. I want to thank the members of the program committee and the external referees for the excellent work that have done in choosing the papers to be presented in the conference. In addition to the submitted papers, the program of JAC 2010 included four distinguished invited speakers: Michel Coornaert (Universit´e de Strasbourg, France), Bruno Durand (Universit´e de Provence, Marseille, France), Dora Giammarresi (Universit` a di Roma Tor Vergata, Italy) and Martin Kutrib (Universit¨at Gie_en, Germany). I sincerely thank the invited speakers for accepting our invitation to come and give a plenary talk in the conference. The invited talk by Bruno Durand was eventually given by his co-author Alexander Shen, and I thank him for accepting to make the presentation with a short notice. Abstracts or extended abstracts of the invited presentations appear in the first part of this volume. The program also included several informal presentations describing very recent developments and ongoing research projects. I wish to thank all the speakers for their contribution to the success of the symposium. I also would like to thank the sponsors and our collaborators: the Finnish Academy of Science and Letters, the French National Research Agency project EMC (ANR-09-BLAN-0164), Turku Centre for Computer Science, the University of Turku, and Centro Hotel. Finally, I sincerely thank the members of the local organizing committee for making the conference possible. These proceedings are published both in an electronic format and in print. The electronic proceedings are available on the electronic repository HAL, managed by several French research agencies. The printed version is published in the general publications series of TUCS, Turku Centre for Computer Science. We thank both HAL and TUCS for accepting to publish the proceedings.Siirretty Doriast

    Hybrid Multiresolution Simulation & Model Checking: Network-On-Chip Systems

    Get PDF
    abstract: Designers employ a variety of modeling theories and methodologies to create functional models of discrete network systems. These dynamical models are evaluated using verification and validation techniques throughout incremental design stages. Models created for these systems should directly represent their growing complexity with respect to composition and heterogeneity. Similar to software engineering practices, incremental model design is required for complex system design. As a result, models at early increments are significantly simpler relative to real systems. While experimenting (verification or validation) on models at early increments are computationally less demanding, the results of these experiments are less trustworthy and less rewarding. At any increment of design, a set of tools and technique are required for controlling the complexity of models and experimentation. A complex system such as Network-on-Chip (NoC) may benefit from incremental design stages. Current design methods for NoC rely on multiple models developed using various modeling frameworks. It is useful to develop frameworks that can formalize the relationships among these models. Fine-grain models are derived using their coarse-grain counterparts. Moreover, validation and verification capability at various design stages enabled through disciplined model conversion is very beneficial. In this research, Multiresolution Modeling (MRM) is used for system level design of NoC. MRM aids in creating a family of models at different levels of scale and complexity with well-formed relationships. In addition, a variant of the Discrete Event System Specification (DEVS) formalism is proposed which supports model checking. Hierarchical models of Network-on-Chip components may be created at different resolutions while each model can be validated using discrete-event simulation and verified via state exploration. System property expressions are defined in the DEVS language and developed as Transducers which can be applied seamlessly for model checking and simulation purposes. Multiresolution Modeling with verification and validation capabilities of this framework complement one another. MRM manages the scale and complexity of models which in turn can reduces V&V time and effort and conversely the V&V helps ensure correctness of models at multiple resolutions. This framework is realized through extending the DEVS-Suite simulator and its applicability demonstrated for exemplar NoC models.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Non-determinism in the narrative structure of video games

    Get PDF
    PhD ThesisAt the present time, computer games represent a finite interactive system. Even in their more experimental forms, the number of possible interactions between player and NPCs (non-player characters) and among NPCs and the game world has a finite number and is led by a deterministic system in which events can therefore be predicted. This implies that the story itself, seen as the series of events that will unfold during gameplay, is a closed system that can be predicted a priori. This study looks beyond this limitation, and identifies the elements needed for the emergence of a non-finite, emergent narrative structure. Two major contributions are offered through this research. The first contribution comes in the form of a clear categorization of the narrative structures embracing all video game production since the inception of the medium. In order to look for ways to generate a non-deterministic narrative in games, it is necessary to first gain a clear understanding of the current narrative structures implemented and how their impact on users’ experiencing of the story. While many studies have observed the storytelling aspect, no attempt has been made to systematically distinguish among the different ways designers decide how stories are told in games. The second contribution is guided by the following research question: Is it possible to incorporate non-determinism into the narrative structure of computer games? The hypothesis offered is that non-determinism can be incorporated by means of nonlinear dynamical systems in general and Cellular Automata in particular

    Quantum Cellular Automata: Theory and Applications

    Get PDF
    This thesis presents a model of Quantum Cellular Automata (QCA). The presented formalism is a natural quantization of the classical Cellular Automata (CA). It is based on a lattice of qudits, and an update rule consisting of local unitary operators that commute with their own lattice translations. One purpose of this model is to act as a theoretical model of quantum computation, similar to the quantum circuit model. The main advantage that QCA have over quantum circuits is that QCA make considerably fewer demands on the underlying hardware. In particular, as opposed to direct implementations of quantum circuits, the global evolution of the lattice in the QCA model does not assume independent control over individual \emph{qudits}. Rather, all qudits are to be addressed collectively in parallel. The QCA model is also shown to be an appropriate abstraction for space-homogeneous quantum phenomena, such as quantum lattice gases, spin chains and others. Some results that show the benefits of basing the model on local unitary operators are shown: computational universality, strong connections to the circuit model, simple implementation on quantum hardware, and a series of applications. A detailed discussion will be given on one particular application of QCA that lies outside either computation or simulation: single-spin measurement. This algorithm uses the techniques developed in this thesis to achieve a result normally considered hard in physics. It serves well as an example of why QCA are interesting in their own right

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first

    Quantum Turing Machines and Quantum Prover-Verifier Interactions

    Get PDF
    We present results on quantum Turing machines and on prover-verifier interactions. In our work on quantum Turing machines, we continue the line of research opened by Yao (1993), who proved that quantum Turing machines and quantum circuits are polynomially equivalent computational models: t ≥ n steps of a quantum Turing machine running on an input of length n can be simulated by a uniformly generated family of quantum circuits with size quadratic in t, and a polynomial-time uniformly generated family of quantum circuits can be simulated by a quantum Turing machine running in polynomial time. We then first revisit the simulation of quantum Turing machines with uniformly generated quantum circuits, and present a variation on the simulation method employed by Yao together with an analysis of it. This analysis reveals that the simulation of quantum Turing machines can be performed by quantum circuits having depth linear in t, rather than quadratic depth, and can be extended easily to many variants of quantum Turing machines, such as ones having multi-dimensional tapes. Our analysis is based on an extension of a method of Arrighi, Nesme, and Werner (2011) that allows for the localization of causal unitary evolutions, involving abstract lemmas that might be of independent interest. We also consider the more complex extension of our variant to the circuit simulation of multi-tape quantum Turing machines, where our variant provides a circuit with O(t^k) size and O(t^{k-1}) depth for the simulation of t steps of a machine with k tapes. This can be contrasted with the O(t^{k}) depth corresponding to the generalization of Yao's simulation by Nishimura and Ozawa (2002). Our usage of abstract techniques regarding the localization of causal unitary evolutions allows again for a simplification of the algebraic manipulation aspects of the construction. We also discuss the further extension to the case of oracle quantum Turing machines. In our work on prover-verifier interactions, we first consider a protocol under the name of perfect/conclusive quantum state exclusion. This means to be able to discard with certainty at least one out of n possible quantum state preparations by performing a measurement of the resulting state. When all the preparations correspond to pure states and there are no more of them than their common dimension, it is an open problem whether POVMs give any additional power for this task with respect to projective measurements. This is the case even for the simple case of three states in three dimensions, which is discussed by Caves, Fuchs and Schack (2002) as unsuccessfully tackled. In our work, we give an analytical proof that in this case POVMs do indeed not give any additional power with respect to projective measurements. We also discuss possible generalizations of our work, including an application of Quadratically Constrained Quadratic Programming that might be of special interest. We additionally consider the problem of quantum hedging, a particular kind of quantum correlation that arises between parallel instances of prover-verifier interactions. M. and Watrous (2012) studied a protocol that exhibited a perfect form of quantum hedging, where the risk for the prover of losing a first game can completely offset the corresponding risk for a second game. We take a step towards a better understanding of this hedging phenomenon by giving a characterization of the prover's optimal behavior for a natural generalization of this protocol. Furthermore, we discuss how the usage of the logarithmic utility principle to analyze prover-verifier interactions could justify further study of quantum hedging

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first
    • …
    corecore