179,454 research outputs found

    Linear-Time Algorithms for Finding Tucker Submatrices and Lekkerkerker-Boland Subgraphs

    Full text link
    Lekkerkerker and Boland characterized the minimal forbidden induced subgraphs for the class of interval graphs. We give a linear-time algorithm to find one in any graph that is not an interval graph. Tucker characterized the minimal forbidden submatrices of binary matrices that do not have the consecutive-ones property. We give a linear-time algorithm to find one in any binary matrix that does not have the consecutive-ones property.Comment: A preliminary version of this work appeared in WG13: 39th International Workshop on Graph-Theoretic Concepts in Computer Scienc

    PQ TREES, CONSECUTIVE ONES PROBLEM AND APPLICATIONS

    Get PDF
    A PQ tree is an advanced tree–based data structure, which represents a family of permutations on a set of elements. In this research article, we considered the significance of PQ trees and the Consecutive ones Problem to Computer Science and bioinformatics and their various applications. We also went further to demonstrate the operations of the characteristics of the Consecutive ones property by simulation, using high level programming languages. Attempt was also made at developing a PQ tree–Consecutive Ones analyzer, which could be instrumental not only as an educative tool to inquisitive students, but also serve as an important tool in developing clustering software in the field of bioinformatics and other application domains, with respect to solving real life problems

    Isomorphism of graph classes related to the circular-ones property

    Get PDF
    We give a linear-time algorithm that checks for isomorphism between two 0-1 matrices that obey the circular-ones property. This algorithm leads to linear-time isomorphism algorithms for related graph classes, including Helly circular-arc graphs, \Gamma-circular-arc graphs, proper circular-arc graphs and convex-round graphs.Comment: 25 pages, 9 figure

    Subclasses of Normal Helly Circular-Arc Graphs

    Full text link
    A Helly circular-arc model M = (C,A) is a circle C together with a Helly family \A of arcs of C. If no arc is contained in any other, then M is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, then M is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we study these subclasses of Helly circular-arc graphs. We show natural generalizations of several properties of (proper) interval graphs that hold for some of these Helly circular-arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc graphs, including forbidden induced subgraphs characterizations. These characterizations lead to efficient algorithms for recognizing graphs within these classes. Finally, we show how do these classes of graphs relate with straight and round digraphs.Comment: 39 pages, 13 figures. A previous version of the paper (entitled Proper Helly Circular-Arc Graphs) appeared at WG'0

    Minimal Conflicting Sets for the Consecutive Ones Property in ancestral genome reconstruction

    Full text link
    A binary matrix has the Consecutive Ones Property (C1P) if its columns can be ordered in such a way that all 1's on each row are consecutive. A Minimal Conflicting Set is a set of rows that does not have the C1P, but every proper subset has the C1P. Such submatrices have been considered in comparative genomics applications, but very little is known about their combinatorial structure and efficient algorithms to compute them. We first describe an algorithm that detects rows that belong to Minimal Conflicting Sets. This algorithm has a polynomial time complexity when the number of 1's in each row of the considered matrix is bounded by a constant. Next, we show that the problem of computing all Minimal Conflicting Sets can be reduced to the joint generation of all minimal true clauses and maximal false clauses for some monotone boolean function. We use these methods on simulated data related to ancestral genome reconstruction to show that computing Minimal Conflicting Set is useful in discriminating between true positive and false positive ancestral syntenies. We also study a dataset of yeast genomes and address the reliability of an ancestral genome proposal of the Saccahromycetaceae yeasts.Comment: 20 pages, 3 figure

    Mol-CycleGAN - a generative model for molecular optimization

    Get PDF
    Designing a molecule with desired properties is one of the biggest challenges in drug development, as it requires optimization of chemical compound structures with respect to many complex properties. To augment the compound design process we introduce Mol-CycleGAN - a CycleGAN-based model that generates optimized compounds with high structural similarity to the original ones. Namely, given a molecule our model generates a structurally similar one with an optimized value of the considered property. We evaluate the performance of the model on selected optimization objectives related to structural properties (presence of halogen groups, number of aromatic rings) and to a physicochemical property (penalized logP). In the task of optimization of penalized logP of drug-like molecules our model significantly outperforms previous results
    corecore