35 research outputs found

    State-of-the-art Models for Object Detection in Various Fields of Application

    Full text link
    We present a list of datasets and their best models with the goal of advancing the state-of-the-art in object detection by placing the question of object recognition in the context of the two types of state-of-the-art methods: one-stage methods and two stage-methods. We provided an in-depth statistical analysis of the five top datasets in the light of recent developments in granulated Deep Learning models - COCO minival, COCO test, Pascal VOC 2007, ADE20K, and ImageNet. The datasets are handpicked after closely comparing them with the rest in terms of diversity, quality of data, minimal bias, labeling quality etc. More importantly, our work extends to provide the best combination of these datasets with the emerging models in the last two years. It lists the top models and their optimal use cases for each of the respective datasets. We have provided a comprehensive overview of a variety of both generic and specific object detection models, enlisting comparative results like inference time and average precision of box (AP) fixed at different Intersection Over Union (IoUs) and for different sized objects. The qualitative and quantitative analysis will allow experts to achieve new performance records using the best combination of datasets and models.Comment: 4 pages, 5 table

    Edge-Based Self-Supervision for Semi-Supervised Few-Shot Microscopy Image Cell Segmentation

    Full text link
    Deep neural networks currently deliver promising results for microscopy image cell segmentation, but they require large-scale labelled databases, which is a costly and time-consuming process. In this work, we relax the labelling requirement by combining self-supervised with semi-supervised learning. We propose the prediction of edge-based maps for self-supervising the training of the unlabelled images, which is combined with the supervised training of a small number of labelled images for learning the segmentation task. In our experiments, we evaluate on a few-shot microscopy image cell segmentation benchmark and show that only a small number of annotated images, e.g. 10% of the original training set, is enough for our approach to reach similar performance as with the fully annotated databases on 1- to 10-shots. Our code and trained models is made publicly availableComment: Accepted by MOVI 202

    Online Open-set Semi-supervised Object Detection via Semi-supervised Outlier Filtering

    Full text link
    Open-set semi-supervised object detection (OSSOD) methods aim to utilize practical unlabeled datasets with out-of-distribution (OOD) instances for object detection. The main challenge in OSSOD is distinguishing and filtering the OOD instances from the in-distribution (ID) instances during pseudo-labeling. The previous method uses an offline OOD detection network trained only with labeled data for solving this problem. However, the scarcity of available data limits the potential for improvement. Meanwhile, training separately leads to low efficiency. To alleviate the above issues, this paper proposes a novel end-to-end online framework that improves performance and efficiency by mining more valuable instances from unlabeled data. Specifically, we first propose a semi-supervised OOD detection strategy to mine valuable ID and OOD instances in unlabeled datasets for training. Then, we constitute an online end-to-end trainable OSSOD framework by integrating the OOD detection head into the object detector, making it jointly trainable with the original detection task. Our experimental results show that our method works well on several benchmarks, including the partially labeled COCO dataset with open-set classes and the fully labeled COCO dataset with the additional large-scale open-set unlabeled dataset, OpenImages. Compared with previous OSSOD methods, our approach achieves the best performance on COCO with OpenImages by +0.94 mAP, reaching 44.07 mAP

    Training-based Model Refinement and Representation Disagreement for Semi-Supervised Object Detection

    Full text link
    Semi-supervised object detection (SSOD) aims to improve the performance and generalization of existing object detectors by utilizing limited labeled data and extensive unlabeled data. Despite many advances, recent SSOD methods are still challenged by inadequate model refinement using the classical exponential moving average (EMA) strategy, the consensus of Teacher-Student models in the latter stages of training (i.e., losing their distinctiveness), and noisy/misleading pseudo-labels. This paper proposes a novel training-based model refinement (TMR) stage and a simple yet effective representation disagreement (RD) strategy to address the limitations of classical EMA and the consensus problem. The TMR stage of Teacher-Student models optimizes the lightweight scaling operation to refine the model's weights and prevent overfitting or forgetting learned patterns from unlabeled data. Meanwhile, the RD strategy helps keep these models diverged to encourage the student model to explore complementary representations. Our approach can be integrated into established SSOD methods and is empirically validated using two baseline methods, with and without cascade regression, to generate more reliable pseudo-labels. Extensive experiments demonstrate the superior performance of our approach over state-of-the-art SSOD methods. Specifically, the proposed approach outperforms the baseline Unbiased-Teacher-v2 (& Unbiased-Teacher-v1) method by an average mAP margin of 2.23, 2.1, and 3.36 (& 2.07, 1.9, and 3.27) on COCO-standard, COCO-additional, and Pascal VOC datasets, respectively.Comment: Under revie

    Adaptive Self-Training for Object Detection

    Full text link
    Deep learning has emerged as an effective solution for solving the task of object detection in images but at the cost of requiring large labeled datasets. To mitigate this cost, semi-supervised object detection methods, which consist in leveraging abundant unlabeled data, have been proposed and have already shown impressive results. However, most of these methods require linking a pseudo-label to a ground-truth object by thresholding. In previous works, this threshold value is usually determined empirically, which is time consuming, and only done for a single data distribution. When the domain, and thus the data distribution, changes, a new and costly parameter search is necessary. In this work, we introduce our method Adaptive Self-Training for Object Detection (ASTOD), which is a simple yet effective teacher-student method. ASTOD determines without cost a threshold value based directly on the ground value of the score histogram. To improve the quality of the teacher predictions, we also propose a novel pseudo-labeling procedure. We use different views of the unlabeled images during the pseudo-labeling step to reduce the number of missed predictions and thus obtain better candidate labels. Our teacher and our student are trained separately, and our method can be used in an iterative fashion by replacing the teacher by the student. On the MS-COCO dataset, our method consistently performs favorably against state-of-the-art methods that do not require a threshold parameter, and shows competitive results with methods that require a parameter sweep search. Additional experiments with respect to a supervised baseline on the DIOR dataset containing satellite images lead to similar conclusions, and prove that it is possible to adapt the score threshold automatically in self-training, regardless of the data distribution.Comment: 10 pages, 4 figures, 5 table

    Semi-Supervised Object Detection in the Open World

    Full text link
    Existing approaches for semi-supervised object detection assume a fixed set of classes present in training and unlabeled datasets, i.e., in-distribution (ID) data. The performance of these techniques significantly degrades when these techniques are deployed in the open-world, due to the fact that the unlabeled and test data may contain objects that were not seen during training, i.e., out-of-distribution (OOD) data. The two key questions that we explore in this paper are: can we detect these OOD samples and if so, can we learn from them? With these considerations in mind, we propose the Open World Semi-supervised Detection framework (OWSSD) that effectively detects OOD data along with a semi-supervised learning pipeline that learns from both ID and OOD data. We introduce an ensemble based OOD detector consisting of lightweight auto-encoder networks trained only on ID data. Through extensive evalulation, we demonstrate that our method performs competitively against state-of-the-art OOD detection algorithms and also significantly boosts the semi-supervised learning performance in open-world scenarios
    corecore