11,024 research outputs found

    Evaluation of the Performance of the Markov Blanket Bayesian Classifier Algorithm

    Full text link
    The Markov Blanket Bayesian Classifier is a recently-proposed algorithm for construction of probabilistic classifiers. This paper presents an empirical comparison of the MBBC algorithm with three other Bayesian classifiers: Naive Bayes, Tree-Augmented Naive Bayes and a general Bayesian network. All of these are implemented using the K2 framework of Cooper and Herskovits. The classifiers are compared in terms of their performance (using simple accuracy measures and ROC curves) and speed, on a range of standard benchmark data sets. It is concluded that MBBC is competitive in terms of speed and accuracy with the other algorithms considered.Comment: 9 pages: Technical Report No. NUIG-IT-011002, Department of Information Technology, National University of Ireland, Galway (2002

    Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm

    Full text link
    Information spreads across social and technological networks, but often the network structures are hidden from us and we only observe the traces left by the diffusion processes, called cascades. Can we recover the hidden network structures from these observed cascades? What kind of cascades and how many cascades do we need? Are there some network structures which are more difficult than others to recover? Can we design efficient inference algorithms with provable guarantees? Despite the increasing availability of cascade data and methods for inferring networks from these data, a thorough theoretical understanding of the above questions remains largely unexplored in the literature. In this paper, we investigate the network structure inference problem for a general family of continuous-time diffusion models using an l1l_1-regularized likelihood maximization framework. We show that, as long as the cascade sampling process satisfies a natural incoherence condition, our framework can recover the correct network structure with high probability if we observe O(d3logN)O(d^3 \log N) cascades, where dd is the maximum number of parents of a node and NN is the total number of nodes. Moreover, we develop a simple and efficient soft-thresholding inference algorithm, which we use to illustrate the consequences of our theoretical results, and show that our framework outperforms other alternatives in practice.Comment: To appear in the 31st International Conference on Machine Learning (ICML), 201

    Penalized Estimation of Directed Acyclic Graphs From Discrete Data

    Full text link
    Bayesian networks, with structure given by a directed acyclic graph (DAG), are a popular class of graphical models. However, learning Bayesian networks from discrete or categorical data is particularly challenging, due to the large parameter space and the difficulty in searching for a sparse structure. In this article, we develop a maximum penalized likelihood method to tackle this problem. Instead of the commonly used multinomial distribution, we model the conditional distribution of a node given its parents by multi-logit regression, in which an edge is parameterized by a set of coefficient vectors with dummy variables encoding the levels of a node. To obtain a sparse DAG, a group norm penalty is employed, and a blockwise coordinate descent algorithm is developed to maximize the penalized likelihood subject to the acyclicity constraint of a DAG. When interventional data are available, our method constructs a causal network, in which a directed edge represents a causal relation. We apply our method to various simulated and real data sets. The results show that our method is very competitive, compared to many existing methods, in DAG estimation from both interventional and high-dimensional observational data.Comment: To appear in Statistics and Computin
    corecore