3 research outputs found

    Advanced concepts for intelligent vision systems

    Get PDF

    A novel hybrid deep learning model for human activity recognition based on transitional activities

    Get PDF
    In recent years, a plethora of algorithms have been devised for efficient human activity recognition. Most of these algorithms consider basic human activities and neglect postural transitions because of their subsidiary occurrence and short duration. However, postural transitions assume a significant part in the enforcement of an activity recognition framework and cannot be neglected. This work proposes a hybrid multi-model activity recognition approach that employs basic and transition activities by utilizing multiple deep learning models simultaneously. For final classification, a dynamic decision fusion module is introduced. The experiments are performed on the publicly available datasets. The proposed approach achieved a classification accuracy of 96.11% and 98.38% for the transition and basic activities, respectively. The outcomes show that the proposed method is superior to the state-of-the-art methods in terms of accuracy and precision

    A simple human activity recognition technique using DCT

    No full text
    International audienceIn this paper, we present a simple new human activity recognition method using discrete cosine transform (DCT). The scheme uses the DCT coefficients extracted from silhouettes as descriptors (features) and performs frame-by-frame recognition, which make it simple and suitable for real time applications. We carried out several tests using radial basis neural network (RBF) for classification, a comparative study against stat-of-the-art methods shows that our technique is faster, simple and gives higher accuracy performance comparing to discrete transform based techniques and other methods proposed in literature
    corecore