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Abstract: In recent years, a plethora of algorithms have been devised for efficient human activity
recognition. Most of these algorithms consider basic human activities and neglect postural transitions
because of their subsidiary occurrence and short duration. However, postural transitions assume a
significant part in the enforcement of an activity recognition framework and cannot be neglected.
This work proposes a hybrid multi-model activity recognition approach that employs basic and
transition activities by utilizing multiple deep learning models simultaneously. For final classification,
a dynamic decision fusion module is introduced. The experiments are performed on the publicly
available datasets. The proposed approach achieved a classification accuracy of 96.11% and 98.38%
for the transition and basic activities, respectively. The outcomes show that the proposed method is
superior to the state-of-the-art methods in terms of accuracy and precision.

Keywords: human activity recognition; transition activities; hybrid models; deep learning

1. Introduction

Human Activity Recognition (HAR) deals with the recognition, interpretation, and
assessment of human daily-life activities. Wearable sensors such as an accelerometer, gyro-
scope, depth sensors etc. can be attached on assorted body locations to record movement
patterns and actions. In recent years, HAR research has attracted critical consideration
on account of its boundless applications, such as in fashion [1], surveillance systems [2,3],
smart homes [4] and healthcare [5].

Several HAR systems have been designed to automate the aforementioned applica-
tions; however, assembling a completely automated HAR framework can be an extremely
daunting undertaking since it requires a colossal pool of movement data and methodical
classification algorithms. In addition, it is a troublesome undertaking in light of the fact
that a solitary movement can be performed in more than one way [6].

Human activities are generally categorized as basic activities, complex activities and
the postural transitions between or within these activities. Postural transition is a finite
movement between two activities, which varies between humans in terms of time and
actions. Most of the works do not take into account the postural transitions because of their
short duration. However, when performing multiple tasks in a short period of time, they
play an important role in effectively identifying activities [7].

Customary AI tools such as machine learning (M.L) algorithms have been utilized
for classification and are capable of achieving satisfactory results. Activity recognition
using standard M.L approaches such as K Nearest Neighborhood (KNN) [8–10], Support
Vector Machine (SVM) [11–14], Decision Tree (DT) [15,16], Random Forest (RF) [17,18] and
Discrete Cosine Transform (DCT) [19–21], etc., have been reported to produce good results
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under controlled environments [22]. The accuracy of these models heavily depends on the
process of feature selection/extraction.

A volume of research has been conducted on activity recognition based on features
obtained from a variety of datasets collected using various sources such as accelerometers
and gyroscopes. However, it is of great importance that a feature selection preprocess
module is applied to select a subset that prunes away any noise and redundancy, which
would otherwise only degrade the performance of the recognition system. This compu-
tation is also called dimensionality reduction; i.e., the selection of features that would
complement each other. An assortment of feature selection strategies have been utilized to
improve the performance of activity recognition systems, such as correlation-based [23] and
energy-based methods [24], cluster analysis [25], AdaBoost [26], Relief-F [27], Single Fea-
ture Classification (SFC), Sequential Forward Selection (SFS) [28] and Sequential Floating
Forward Search (SFFS) [29]. The aim of feature selection methods is to drop features that
carry the least information for discriminating an activity, consequently increasing efficiency
without compromising robustness. For more on feature selection methods, readers are
referred to a survey in [30]. Mi Zhang and Alexander A.Sawchuk have proposed an SVM-
based framework to analyze the effects of feature selection methods on the performance of
activity recognition systems [31]. This research has shown that the SFS method performs
better than Relief-F and SFC methods. Essentially, this points to the fact that the most
relevant features encode more information than the left out features, which considerably
increases the performance of the activity recognition system.

Likewise, Ahmed et al. [32] demonstrated a feature selection model based on a hybrid
SFFS feature selection method that selects/extracts the best features in view of a set of
specific rules. Moreover, sets of the best features are formed and contrasted with the
next set of features. The final optimal features were input to a SVM classifier for activity
classification. However, machine learning techniques to date have used shallow-structured
learning architectures that only use one or two nonlinear layers of feature transformation.
In addition, shallow architectures usually refer to statistical features such as the mean,
frequency, variance, amplitude, etc., that could only be used for low-level activities such
as running, walking and standing that are well-constrained activities and cannot model
complex postural situations [33]. Moreover, the lack of good quality data due to the costly
process of labeling that requires human expertise/domain knowledge is also a bottleneck,
as well as the manual selection of features, which is vulnerable to a margin of human
error that would not generalize well to unseen data, because activity recognition tasks in
real-life applications are much complicated and require close collaboration with the feature
selection module [34].

As the volume of datasets has increased to an unprecedented level, in recent years,
deep learning (D.L) has accomplished noteworthy results in the space of HAR. One of the
impactful aspects of deep learning is the automatic feature identification and classification
with high accuracy, which consequently produced an effect in the space of HAR [35]. A
substantial amount of uni-model and hybrid approaches have been introduced to gain ben-
efit from deep learning techniques, catering for the shortcomings of the machine learning
domain and utilizing the multiple levels of features found in different levels of hierarchies.
Deep learning models involve a hierarchy of layers to accommodate low and high-level
features as well as linear and nonlinear feature transformations at these levels, which
helps in learning and refining features. To this end, models such as Recurrent Neural Net-
works (RNN) [36], Convolutional Neural Networks (CNN) [37], Long Short-Term Memory
(LSTM) [38], etc., are used to overcome the impediments of traditional M.L algorithms
that were dependent on manual features, in which the erroneous selection/classification
of features could have undesirable impacts on the applications at hand. Therefore, deep
learning networks have found a natural application in recognition tasks and have been
popularly used for feature extraction in activity recognition research [39]. One downside to
the deep learning paradigm, especially using the hybrid architectures, is their increased
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cost of processing the available huge amount of datasets. However, it is worth the cost
because a HAR system requires accurate classification results of the deep learning models.

In this context, this work proposes a hybrid deep-learning based approach where
models are trained simultaneously, instead of in a pipelined setup, to recognize basic and
transitional human activities. The novel aspects include the simultaneous implementation
of multiple deep learning models to better distinguish the classification results and the
inclusion of transitional activities to present a robust activity recognition approach.

The rest of this paper is structured as follows: Section 2 provides the details about
existing related works, Section 3 presents the proposed approach, Section 4 discusses the
experimentation and results, and Section 5 draws conclusions. Supplementary Materials
contains the repository link for the source code and datasets used in this approach.

2. Related Works

We have classified the current literature into two groups: approaches based on
(Section 2.1) basic activities and (Section 2.2) transition activities. The details are provided
in the subsequent subsections.

2.1. Basic Activities

Wan et al. [40] demonstrated a CNN framework that showed that the fine-tuned
conventional CNN still outperforms SVM, Multilayer Perceptrons (MLP), LSTM and
Bidirectional LSTM (BiLSTM) networks. Moreover, the results showed a significant increase
in classification accuracy compared to machine learning classification models such as, DT,
RF, etc. However, these approaches have limitations as they can only extract simple features.
Zhou et al. [41] demonstrated a deep learning framework for weakly labeled data which
was able to extract features well. The framework mainly accommodated an auto-labeling
technique that was carried out on top of a HAR framework and employed a distance-based
reward rule strategy to label the data. The newly labeled data were fused with the strongly
labeled data and passed through a LSTM module for feature extraction. This approach was
focused on the labeling of unlabeled and weakly labeled data rather than the classification
accuracy. To that end, it required a large dataset of unlabeled data for accurate labeling,
which resulted in an increased computational cost.

Chen et al. [42] demonstrated an Attention-Based BiLSTM (ABiLSTM) framework
by introducing the concept of attention, which assigns weights to features based on their
importance for the current recognition scenario. The results showed superior classification
accuracy compared to modern approaches in the class of shallow as well as deep learning
architectures. All the experimental evaluations were based on the publicly available
pre-processed data, and no real-time data collection was performed, which assumes a
significant part in the assessment of a signal-based system. Zhu et al. [43] demonstrated
a Deep LSTM (DLSTM) architecture for feature recognition and filtration. Smart phone
sensors were employed to train the model on labeled and unlabeled data for human
activity recognition. DLSTM encapsulated multiple LSTM layers between the I/O gates.
The raw data were processed through the augmentation module to build the measure of
information, and the removal of Gaussian noise was initiated to filter irregularities in the
final input. The DLSTM separated the low-level features, which were dropped out, and
the high-level features, which were extracted. The unsupervised data loss affected the
unlabeled data was calculated and labeled in light of a number of rules. The benchmarks of
the proposed DLSTM, on the publicly available dataset, showed superior results compared
to cutting-edge semi-supervised learning frameworks in a user-controlled environment.

Xu et al. [44] fused a conventional RNN with an Inception Neural Network (INN)
model targeted at HAR based on wearable sensors to create InnoHAR. The INN architecture
is composed of various deep layers consisting of multiple convolution layers that are
parallel to pooling layers, forming the inception layer. The INN architecture has been
tested on multiple publicly available datasets and it portrayed superior performance
compared to Deep–Convolutional–LSTM models. The drawback of this framework was
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the poor initialization of INN, which required a great deal of computation to be dealt with,
and minor changes could require the costly retraining phase to be repeated.

2.2. Transition Activities

All of the aforementioned works have a significance of their own; however, all of
them are based on basic human actions. None of these works have discussed or employed
transition activities. Transition activities (or postural transitions) were publicly introduced
in [45]. Although postural transitions may not have an emphasizing effect on the system
due to their short duration and lower incidence, the validity of this statement is dependent
on the application prospects. Shi et al. [46] proposed a standard deviation trend-analysis
(STD-TA)-based architecture to recognize transition activities. For the dimensional re-
duction of features, only statistical features were extracted, and a conventional SVM was
utilized for classifier training. The self-collected dataset was based on 8 basic daily life
activities and 10 transitions.

Liu et al. [47] introduced a housekeeping task monitoring system to lay out the signif-
icance of activity transition events in housekeeping tasks related to elderly people. The
self-generated dataset was divided into three parts which contained the basic housekeeping
activities, inter-transition and intra-transition activities. The approach was based on a
SVM model with an embedded transition event detection module, and it managed to
achieve a classification accuracy of 81.62%. Ahmad et al. [48] proposed a Deep Belief
Network (DBN)-based approach to extract features such as mean, median, auto-regressive
coefficients, etc., from the raw data obtained from sensors. To make the features more
robust, these features were further filtered through a Kernal Principal Component Analysis
(KPCA) and Linear Discriminant Analysis (LDA) unit. The proposed model was compared
with SVM and ANN networks and was shown to achieve an accuracy of 95.8%.

Gusain et al. [49] proposed a transition-aware Gradient Boosted Decision Tree ap-
proach. They implemented incremental learning by utilizing ensembles of SVM. Batches
of data were trained on frequent iterations, but after the initial cycle of training, all the
other cycles were trained on the incorrectly classified data. Finally, the weighted sum of all
the machines was calculated, and the accuracy of the whole system was computed—the
accuracy of the whole system was calculated to be 94.9%. Yulita et al. [50] presented
a hybrid model based on a classic KNN and SVM model where the SVM kernels were
polynomial. Moreover, they combined their approach with the Radial Basis Function (RBF)
and Sigmoid function. After cross validation, they managed to achieve an accuracy of
86%. These results were achieved due to the RBF kernel, as it is a useful function to solve
classification problems by finding non-linear classifiers. Atrsaei et al. [51] designed a
location-independent postural transition detection algorithm. Postural transitions were
detected by the sensor following the vertical acceleration calculation, and kinematic fea-
tures were extracted to characterize the postural transitions. The approach was focused
on the algorithm rather than the accuracy of the system. The proposed approach was
independent of the placement of sensors on the body and produced satisfactory results.
Dan Setterquist [52] evaluated multiple networked LSTM units on a collected dataset of
basic activities and postural transitions and managed to achieve 89% accuracy in a user-
controlled environment. However, the utilization of multiple LSTM units in a pipelined
flow abruptly slows down the whole model and increases the complexity of the system.

In a more recent study, Wang et al. [53] proposed a hybrid D.L. approach in which
multi-sensor data were passed through a CNN and the output was classified by the LSTM.
The fundamental accomplishment of this approach is the activity transition identification
alongside basic activities while emphasizing the fact that most of the research works do
not employ the postural transitions; however, in human behavior recognition, this is non-
negligible and thus an important task to consider. The accuracy of real-time movement
recognition is strongly dependent on the detection of postural transitions. The triaxial
multi sensor data were fused and fed to the multilayered CNN. The resultant feature
matrix from the CNN was flattened and input to the LSTM module. LSTM was separately
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trained on the sensor data, and a feature fusion was performed before the final classification.
The benchmark showed superior results compared to state-of-the-art CNN, LSTM, CNN-
BiLSTM and CNN-GRU models on a publicly available dataset.

Taking into consideration the state-of-the-art technologies and innovations, the M.L.
trend is shifting from the traditional high-power consuming hardware devices to low-
power mobile devices. This shift is referred to as TinyML [54]. This largely breaks
the high-power consumption barrier in the areas of M.L. By focusing on low-power de-
vices, the responsiveness of the whole system can be increased while reducing the power
consumption-based cost of the system. Banbury et al. [55] employed a differential neural
architecture search (DNAS) to bring forward a MicroNet model deployed on MCU, which
showed superior results on TinyML benchmark tasks which included audio-based key-
word spotting, visual wake words and anomaly detection. DNAS models were utilized
due to their characteristics of requiring low MCU memory and energy.

The current limitations of TinyML are restricted to shrinking the size of the M.L. model;
however, with the passage of time and advancements in technology, lightweight neural
networks are being designed that can take up to few hundred KBs of space on the TinyML
devices and produce substantial results. In future, TinyML could also play an important
part in the applications of Augmented Reality (AR) headsets that need to be kept powered
on due to shared constraints. For such applications, sensors, such as accelerometer or
compass, are used in conjunction with other sensors e.g. gyroscope, heart-rate sensors
etc. Though the huge pool of data needs to be segmented for such applications but by
having data from multiple sensors, a more interactive and efficient AR environment can be
visualized [56].

The discussed literature is summarized in Table 1. The literature signifies the im-
plementation of deep learning networks over conventional machine learning algorithms
where accuracy and vast pools of data are a major concern. To develop an efficient and
scalable HAR system, this paper introduces a novel hybrid model which takes both basic
activities and postural transitions (transition activities) into account. Accordingly, we
integrated multiple deep learning models for feature extraction and proposed a decision
fusion module for activity recognition.

Table 1. Literature Summary.

Ref. Model Type Network Accuracy (%) Transition Activities Weaknesses

[32] Machine Learning SVM + SFFS 96.80 No
Higher accuracy on smaller
datasets—increase in data causes
decrease in accuracy.

[46] Machine Learning STD-TA 80.00 Yes

A conventional SVM with an
average accuracy that extracts
statistical features to differentiate
between transitional and basic
activities.

[47] Machine Learning SVM-TED 81.62 Yes

A traditional SVM with a
transition event detection module
to detect postural transitions but
lacks accuracy for efficient
identification of an action.

[40] Deep Learning CNN 91.00 No Requires strongly labeled data as
well as increased features in data.

[42] Deep Learning BiLSTM 87.50 Yes

Single BiLSTM unit cannot extract
quality features from the input,
no past information to correlate
the data with. Works better on
time series data.
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Table 1. Cont.

Ref. Model Type Network Accuracy (%) Transition Activities Weaknesses

[52] Deep Learning Multi-LSTM 89.00 Yes

Multiple pipelined LSTM units
used in this approach, causing the
network to train slowly and
increasing the complexity of the
whole model. Any fault or
irregularity in a single LSTM unit
affects the overall pipeline of
LSTM units.

[48] Deep Learning DBN 95.80 Yes

DBN makes the network
architecture more complex to
train, and it has been replaced
with ReLu, which better handles
the vanishing gradient problem.

[44] Hybrid INN + RNN 94.00 No

INN has poor initialization,
which makes it hard to debug,
thus increasing the cost of the
system. Moreover, a fine-tuned
CNN can achieve the same or
better performance than INN,
which is no longer used in
state-of-the-art systems.

[49] Hybrid GBDT 94.90 Yes
Gives best results on smaller
datasets whereas accuracy
decreases as the data increase.

[53] Hybrid CNN + LSTM 95.80 Yes

The model itself is complex and
the CNN used is a conventional
CNN with a basic three-layered
structure that is not optimized at
all. Complex activities and their
transitions were not considered.

3. Proposed Approach

The architecture for the proposed approach consists of three deep learning (D.L)
networks: LSTM, BiLSTM and CNN as depicted in Figure 1. Three D.L. networks are
utilized due to the imposition of the decision fusion module in the proposed approach.
The proposed approach requires at least three D.L. networks to distinguish between the
individual model results and implement decision fusion in an efficient manner. The raw
sensor data are converted into a feature matrix and fed to these models separately. Batch
normalization is employed in all three networks to normalize the output of each layer [57].
After the classification results are retrieved from each model, a decision fusion module is
initiated for the final classification. The subtleties of the proposed approach are given in
the accompanying sections.
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Figure 1. Architecture of the proposed system.

3.1. Long Short-Term Memory (LSTM)

The LSTM framework integrated in this approach is a standard unit contrived of an
input gate, output gate, a forget gate and a memory cell. The LSTM unit is graphically
shown in Figure 2. The feature matrix is transformed into a 1D vector of y elements and
fed to the model for training, and the number of neurons are configured to be η. “Adam” is
configured to be the adaptive optimizer as it performs best with sparse data. Moreover, the
learning rate of µ is adapted to achieve the best results while avoiding the loss of training
input. A dropout rate of κ is used to avoid over-fitting while maintaining the integrity of
the input and output of neurons. Batch normalization is used after the fully connected
layer to normalize the input of every layer in the model, and the Softmax layer classifies
the results. Table 2 shows all the hyper parameters in LSTM and their respective values for
the two datasets involved.

Figure 2. LSTM unit.
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ft represents the forget gate, which handles the amount of information to be kept and
dropped. It is consumed by the sigmoid function, which scales the values between 0 and 1,
thus dropping values <0.5. Ct represents the input gate that quantifies the importance of the
next input (Xt) and updates the cell state. The new input (Xt) is standardized between −1
and 1 by the tanh function, and the output is point-wise multiplied by Ct. Ct−1 represents
the state of the cell at previous timestamps, which is updated after each time step. The
information required to update the cell’s state is gathered at this point, and a bit-wise
multiplication is carried out between the previous cell state (CT) and the forget vector. This
is followed by the bit-wise addition with the output of input gate, and the cell state is
updated. Finally, the output gate (Ot) determines what the next hidden state should be.
The hidden state encapsulates the information regarding previous inputs (Ht−1). The flow
of information through the following gates is mathematically shown in Equation (1).

ft = sigmoid(Xt ∗U f + Ht−1 ∗W f )

Ct = tanh(Xt ∗UC + Ht−1 ∗WC)

Ot = sigmoid(Xt ∗UO + Ht−1 ∗WO)

(1)

where W and U represent the weights corresponding to their respective gates.

Table 2. LSTM & BiLSTM Parameters.

Parameter Value-Dataset A Value-Dataset B

y 561 60

ζ 0.002 0.002

η 100 50

Optimizer Adam Adam

κ 0.5 0.5

Epochs 400 100

3.2. Bidirectional Long Short-Term Memory (BiLSTM)

The BiLSTM model utilized is based on dual recurrent (LSTM) layers, as shown in
Figure 3. The top-most layer is referred to as the embedding layer, which predicts the
output for different time steps. The second layer is the forward LSTM (first recurrent)
layer, which takes the input in the forward direction. The third layer is the backward
LSTM (second recurrent) layer, which moves the input in the backwards direction. The first
recurrent layer runs the input from the past to future, while the second recurrent layer runs
the input from the future to past. The second recurrent layer is provided with the reverse
sequence of the input that preserves the future information. This effectively increases the
information required by the network for accurate predictions, thus improving the context
available to the BiLSTM network. The additional training of data in BiLSTM model shows
better results compared to those of LSTM. The BiLSTM hyper parameters were kept the
same as those of the LSTM to avoid any inconsistencies in the network and to track the
changes in performance on multiple datasets.
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Figure 3. BiLSTM unit.

3.3. Convolutional Neural Networks (CNN)

In this research work, a 2D-CNN is designed which takes its input as a feature matrix
“I”. The CNN is comprised of two stacked hidden layers, a fully connected layer, batch
normalization layer and a softmax layer for classification, as shown in Figure 4. Each
hidden layer is a stack of “Convolution–ReLu–Maxpool” layers. The convolution layer
outputs a feature map which is passed through the “Rectified Linear Unit (ReLu)” piece-
wise linear function ($). The output of ReLu becomes the input to the pooling layer. Among
various sorts of pooling techniques, max pooling chooses the greatest component from
each block in the feature map. The pool size deals with the block to be covered and is kept
as γ . Padding is set to “SAME”, and the stride is set as “s”, such that the whole input block
is covered by the filter.

Figure 4. CNN unit.

The numbers of kernels in the two convolution layers are α and β, respectively. The
kernel sizes are τ and ν, respectively. Zero padding is added to fill the edges of the input
matrix, and a learning rate of ζ is adopted. The input to the convolution layer is of size
hxwxd, where h represents the height of the input, w represents the width of the input, and
d refers to the dimension of the input. In this approach, the dimension of the input is 0 as we
are dealing with sparse sensor data. The convolution layer applies a filter of size fhx fwxd,
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where fh denotes the filter height and fw represents the filter width. The convolution layer
outputs a volume dimension or feature matrix ( fm) as shown in Equation (2).

fm = (h− fh + 1) ∗ (w− fw + 1) ∗ 1 (2)

A batch normalization layer is utilized after the fully connected layer to normalize the
data in all the previous layersm, and the output is sent to the softmax layer for classification.
The mean and variance calculation in batch normalization is shown in Equations (3) and
(4), where x denotes the batch sample, µB represents the batch mean, and σ2

B represents
the mini batch variance. Table 3 shows all the parameters involved in CNN and their
respective values.

µB =
1
m

m

∑
i=1

xi (3)

σ2
B =

1
m

m

∑
i=1

(xi − µB)
2 (4)

Table 3. CNN parameters.

Parameter Value-Dataset A Value-Dataset B

I 24 × 24 8 × 8

s 1 1

α 8 8

β 18 18

τ 2 × 4 2 × 4

ν 2 × 8 2 × 8

γ 2 2

$ ReLu ReLu

ζ 0.002 0.002

Epochs 50 50

3.4. Model Implementation

An input is fed to each model separately, and activities are classified based on their
respective labels. LSTM is utilized for its ability to achieve superior results in sequence
to sequence classification. The LSTM encapsulates an input layer, hidden layers and a
feed-forward output layer. The hidden layer confines memory cells and multiple gated
units. The gated units are divided into input, output and forget gates. A feature vector is
fed to the input gate which covers the update gate. The update gate is a combination and
works on the same principals as the input and forget gate; thus, it decides which values to
let through and which to drop. The tanh layer makes sure the values are scaled between
−1 and 1. The forget gate sorts out how much information can be aggregated from the
previous gate into the memory cell. The Sigmoid activation is used to scale the output from
the gates between 0 and 1 to speed up the training and reduce the load on network. The
results of the output gate are generated based on the cell’s state and flattened by the fully
connected layer. All the parameters and inputs to layers are scaled and standardized by
the batch normalization layer, and the final output is classified by softmax.

The feature vector is passed to a BiLSTM network. BiLSTM has same parameters and
works on the same principles as an LSTM. The only point of difference is that in BiLSTM,
the input is fed to the model twice for training: once from beginning to the end and once
from end to the beginning. Therefore, by utilizing BiLSTM, we can preserve information at
any time at a point in future and past, which generates a refined feature map. Furthermore,
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BiLSTM speeds up the training process, and this dual training of data better classifies the
activities compared to LSTM. The final feature map is flattened and classified by softmax.

For the precise conversion of data into a matrix for CNN, zero padding is added to the
input. Convolutions are performed on the matrix and weights are distributed among the
filters. A bias is set to update the values of weights after a complete iteration. The output
from the convolution layer is passed through the ReLu to convert all the negative values in
the resulting feature matrix to zero.

The output of ReLu is input to the pooling layer to shrink the feature matrix and
normalize the overall parameters in the hidden layer. Among several pooling techniques,
maxpool is the most effective while dealing with sensor data and is thus utilized in
our approach.

The feature map from the maxpool layer is input to the second hidden layer, and
the whole process is repeated twice. The final feature matrix is flattened in the fully
connected (FC) layer and forms a pre-classification sequence. After the FC layer, the batch
normalization layer is used to normalize the output of all the layers in CNN. The softmax
layer predicts polynomial probability distributions and generates categories based on
these predictions.

Softmax is utilized in all models due to its ability to generate statistical probabilities
alongside classes. These probabilities are exerted in the decision fusion module for final
classification. After all three networks, the observations (instances) corresponding to each
activity are input to the models, and each network returns the predicted classes along with
the class probabilities. The predictions are then inter-compared and summed in a decision
fusion module, and final classification results are generated.

3.5. Decision Fusion

The decision fusion module prioritizes the selection based on the class probabilities.
Each returned class accommodates a probability value between 0 and 1 within all three
networks. The resultant probabilities of each returned class from all networks are summed
respectively, and the highest value-based class is designated to be the final recognized class
such that.

Let P1
i represent the probability of the first activity class in the ith deep learning model;

then, the probabilities of the recognized activities (P1, P2, ...., PM) in (P1, P2...., Pn) networks
can be defined as P1

total , P2
total , ....., PM

total , respectively, where n represents the total number
of deep learning networks in the model. Then, the sum of all the probabilities against each
instance can be defined as (5)

Pj
total =

n

∑
i=1

Pk
i , (5)

where j = 1, 2, ...,M. The cumulative probability of the same resultant classes against each
instance is calculated and compared with the cumulative probability of other resultant
classes. For the function f : g→ j, where g is a subset of j and contains the sum of same
predicted classes from each model, j represents the set of all generated probabilities from all
networks. k takes the maximum argument of all the values in g and returns the classified
activity, as shown in Equation (6).

g = [P1
total , P2

total , P3
total , ...., PM

total ]

k = argmax
g

f (g)
(6)

Finally, the class associated with the highest probability value k will be returned as the
recognized class. The algorithm for the decision fusion module is shown in Algorithm 1.
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Algorithm 1: Decision fusion.
Ensure: train.CNN_Network = CNet
Ensure: train.LSTM_Network = LNet
Ensure: train.BiLSTM_Network = BNet

Load TestingFeatures = X
Input X to each network separately
for i← 1 to X do

[LSTMclass,LSTMprob] = classify(LNet,LFeatures(i))
[BiLSTMclass,BiLSTMprob] = classify(BNet,BFeatures(i))
[CNNclass,CNNprob] = classify(CNet,CFeatures(i))
ConfidenceArray = [max(LSTMprob) max(BiLSTMprob) max(CNNprob)]
CatogoryArray = [LSTMclass BiLSTMclass CNNclass]

end for
Probability Calculation:
A1← LSTMprob(LSTMclass)
A2← BiLSTMprob(LSTMclass)
A3← CNNprob(LSTMclass)

B1← LSTMprob(BiLSTMclass)
B2← BiLSTMprob(BiLSTMclass)
B3← CNNprob(BiLSTMclass)

C1← LSTMprob(CNNclass)
C2← BiLSTMprob(CNNclass)
C3← CNNprob(CNNclass)
return A← A1 + A2 + A3
return B← B1 + B2 + B3
return C ← C1 + C2 + C3
{A, B, C return the summed probabilities of same resultant classes from each
network}
Argument Max:
k← [A B C]
{k returns the argument max of A,B and C}
{I represents the respective deep learning model}

[M, I]←max(k)
if I ←1 then

Classi f iedActivity(i, :)← LSTMclass
end
if I ←2 then

Classi f iedActivity(i, :)← BiLSTMclass
end
if I ←3 then

Classi f iedActivity(i, :)← CNNclass
end
{Classi f iedActivity populates a list of Activities }
return Classified Activities

4. Experimental Results
4.1. Datasets

Two publicly available datasets were utilized for the experimental analysis of the
proposed model. The following two datasets were selected based on the inclusion of
transitional activities in the case of the former and to validate the performance of the
proposed approach with fewer input features for the latter, respectively. Raw sensor data
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were transformed into a feature matrix for both datasets and then fed to the model. Next,
we describe the two datasets.

4.1.1. Dataset A: Human Activities and Postural Transition Dataset (HAPT)

HAPT [45] is an extended version of the UCI HAR dataset [58] and accommodates six
additional postural transitions alongside six basic activities. Moreover, the dataset contains
the unprocessed raw data composed of triaxial signals generated from a Samsung Galaxy
II cellphone’s embedded accelerometer and gyroscope sensors. The dataset also includes
the fully processed data based on a 561 feature vector, which is partitioned into two groups:
one being the training input (70%) and the other being the testing input (30%).

The accumulated information is based on an experiment which involved 30 users
performing 12 activities (6 basic and 6 transition). The basic activities recorded are “walking,
walking upstairs, walking downstairs, sitting, standing and lying”, and the transition
activities are “stand to sit, sit to stand, sit to lie, lie to sit, stand to lie and lie to stand”. An
overview of the instances in dataset A is shown in Table 4.

The choice of the HAPT dataset was due to the inclusion of six postural transitions
alongside basic activities. Moreover, the dataset contains fully processed data where triaxial
signals have been transformed into statistical features by using a Fast Fourier Transform
(FFT), including the mean, standard deviation, max, min, etc.

Table 4. Human Activities and Postural Transitions dataset (Dataset A) overview.

Activity Training Instances Test Instances

Walking 1226 496

Walking Upstairs 1073 471

Walking Downstairs 987 420

Sitting 1293 508

Standing 1423 556

Laying 1413 545

Stand to Sit 47 23

Sit to Stand 23 10

Sit to Lie 75 32

Lie to Sit 60 25

Stand to Lie 90 49

Lie to Stand 57 27

4.1.2. Dataset B: Human Activity Dataset

This dataset [59,60] contains 24,075 observations against 5 human activities (sitting,
standing, walking, running and dancing). A single observation accommodates 60 features
converted from the raw triaxial data generated through a smartphone’s accelerometer and
gyroscope sensor. The variables involved are as follows: ‘actid’ is a vector composed of
activity IDs in the form of integers ranging from 1 to 5, ‘actnames’ is a vector composed
of the activity names corresponding to their respective activity IDs, ‘feat’ is a feature
vector composed of 60 features against every observation, and ‘featlabels’ is a list of names
corresponding to every feature.

The decision of the selection of dataset B was based on the availability of a vast pool
of observations against five basic activities. This lead to a better validation of the proposed
approach on basic activities. The dataset was divided into a 90–10 proportion for training
and testing, respectively. An overview of the the instances in dataset B is shown in Table 5.
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Table 5. Human Activity dataset (Dataset B) overview.

Activity Training Instances Test Instances

Sitting 5265 585

Standing 5598 622

Walking 4856 540

Running 3561 395

Dancing 2388 267

4.2. State-of-the-Art Approaches

Table 6 shows the average recognition rate (accuracy) of various transition-aware
approaches on dataset A. It very well may be noticed that the “standard deviation-based
trend analysis” module fused with an SVM can achieve satisfactory results (80%) and
achieve almost the same accuracy (81.62%) as the SVM infused with a transition event
detection module. Both approaches are based on conventional machine learning models
and fail to achieve increased performance on relatively large datasets. Comparatively,
gradient-boosted decision trees outperformed (94.90%) both approaches by calculating
the sum of weights from the dual training of correctly and incorrectly classified data.
The approach is based on a fine-tuned SVM; however, the performance and the accuracy
of the proposed approach degrades as the data are increased. This is called the curse
of dimensionality, when too much data tunes the model to memorize data and cause
over-fitting. Consequently, all three SVMs exhibit a common limitation corresponding
to decreased performance with this increase in data. To fill the gaps, the deep learning
approach utilizing multiple LSTM units, to classify transitional activities, achieved an
accuracy of 89% as compared to conventional SVM approaches. However, the deep
structure of LSTM with multiple networked cells slowed down the overall model, causing
a vanishing gradient and increasing the computational cost. To this end, another approach
utilized DBN to handle the vanishing gradient problem and extracted features from raw
sensor data. The extracted features were refined by a component analysis kernel and
analyzed by the LDA unit. Experimental evaluations have shown the DBNs to be superior,
with 95.80% accuracy. However, DBNs have become obsolete due to their complex structure
and have been replaced by a much simplified ReLu unit, which has been introduced to
handle the vanishing gradient problems in neural networks.

Table 6. Comparison with state-of-the-art approaches in terms of average accuracy (Dataset A).

Approach Average Accuracy (%)

STD-TA [46] 80.00

SVM-TED [47] 81.62

LSTM [52] 89.00

GBDT [49] 94.90

DBN [48] 95.80

CNN-LSTM [53] 95.80

Proposed 96.11

To overcome the flaws in the afore-mentioned approaches, the CNN-LSTM approach
demonstrated a pipelined model by feeding the CNN-extracted features to LSTM for
refinement and feature fusion. The predicted results showed superior and equal results
(95.80%) compared to the afore-mentioned state-of-the-art research works. Every approach
has a significance of its own; however, the approaches lack scalability—i.e., having a
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complex structure—or any irregularity in the pipeline architecture can halt or slow down
the system.

4.3. Quantitative Analysis

The quantitative analysis of the proposed framework was carried out against state-
of-the-art approaches using the metrics accuracy, precision, recall and F-measure. The
resultant metrics were generated based on the test data partitioned from Datasets A and B,
respectively. The resultant metrics of the recognized activities from dataset A are shown
in Table 7. The activity ID labels “A1, A2, A3, A4, A5, A6” represent the basic activities
“Walking”, “Walking Upstairs”, “Walking Downstairs”, “Sitting”, “Standing” and “Lying”,
respectively, and the labels “A7, A8, A9, A10, A11, A12′′ represent the postural transitions
“Stand to Sit”, “Sit to Stand”, “Sit to Lying”, “Lying to Sit”, “Stand to Lying” and “Lying
to Stand”, respectively. It can be observed that the basic activities (A1, ..., A6) achieve an
average precision of 97.33%, average recall of 97% and an average F1 score of 97%. However,
transitional activities (A7, ..., A12) showed a reduced average precision of 76.66%, average
recall of 80.33% and an average F1 score of 78.16%. These results are not consistent with
the results obtained for the basic activities.

Table 7. Accuracy, precision, recall and F-measure of various activities—dataset A.

Activity ID Accuracy (%) Precision (%) Recall (%) F-Measure (%)

A1 99.34 97.00 99.00 98.00

A2 99.11 98.00 96.00 97.00

A3 99.56 99.00 98.00 98.00

A4 98.13 96.00 92.00 94.00

A5 98.36 94.00 97.00 95.00

A6 100.00 100.00 100.00 100.00

A7 99.49 62.00 78.00 69.00

A8 99.97 91.00 100.00 95.00

A9 99.75 84.00 90.00 87.00

A10 99.59 73.00 76.00 75.00

A11 99.46 80.00 82.00 81.00

A12 99.46 70.00 56.00 62.00

The reason for this is the unavailability of abundant observations in the dataset for
transition activities, causing over-fitting. Overfitting is the phenomenon of memorizing
the seen data (in the case of a small dataset), meaning that the model would be unable to
generalize on unseen data. Compared to basic activities, the total number of observations
recorded for transition activities is significantly reduced, which caused our proposed
model to over-fit. Deep neural networks perform better when the volume of data is larger;
however, in this case, the volume of transitional activities varied greatly compared to basic
activities, leading to less than satisfactory results. However, the final classification can be
observed to have achieved the average accuracy of 96.11%, outperforming all the referenced
state-of-the-art methods and portraying the overall performance of the proposed approach.

The resultant metrics of the recognized activities from dataset B are shown in Table 8.
The activity ID labels “B1, B2, B3, B4, B5, B6” represent the basic activities “Sitting”, “Stand-
ing”, “Walking” “Running” and “Dancing”, respectively. It can be observed that the
classified activities show an average precision of 97%, average recall of 98% and an average
F1 score of 97.80%. The proposed approach showed an average accuracy of 98.38% with
a higher recall, precision and F1 score compared to dataset A. The comparative analysis
of basic activities in both datasets shows superior classification results for dataset B. The



Sensors 2021, 21, 8227 16 of 20

reason for this is the higher number of observations for individual activities in dataset
B compared to dataset A. This leads to the robust training of networks in the latter case.
Therefore, even though the number of features per observation was significantly greater in
dataset A, results based on dataset B were superior. Table 9 shows the average accuracy of
the proposed approach evaluated on the two publicly available datasets.

Table 10 shows the confusion matrix corresponding to the final classification of activi-
ties from dataset A. The diagonal bold entries represent the correctly identified instances of
the activities A1, A2, ..., A12, respectively. It can be observed that 490 out of 496 instances
of A1 were correctly identified in the final classification; meanwhile, three instances were
predicted to belong to class A2 and three from class A3. Similarly, 12 instances from A2 and
3 instances from A3 were incorrectly predicted to belong to A1. To this end, the column
entries (excluding the bold entries) represent the incorrectly classified instances of those
particular activities, and the row entries represent the incorrectly classified instances of
the bold entries. Moreover, it can also be observed that the number of observations for
transition activities was considerably smaller compared to basic activities. In a similar
manner, Table 11 shows the confusion matrix relating to the final classification of activities
from dataset B, where the diagonal entries represent the correctly classified instances of the
activities B1, B2, ..., B5.

Table 8. Accuracy, precision, recall and F-measure of various activities—dataset B.

Activity ID Accuracy (%) Precision (%) Recall (%) F-Measure (%)

B1 99.92 100.00 100.00 100.00

B2 99.88 100.00 100.00 100.00

B3 99.58 99.00 99.00 99.00

B4 98.71 96.00 96.00 96.00

B5 98.67 93.00 95.00 94.00

Table 9. Average accuracy of the proposed approach on two datasets.

Average Accuracy (%)

Proposed Approach
dataset A dataset B

96.11% 98.38%

Furthermore, a comparison of the average execution time of the proposed model was
carried out with the CNN-LSTM approach on dataset A. Continuing with our explanation,
we have represented 5 min (300 s) as 5 units of time. Figure 5 exhibits the difference in
execution time of both approaches on 10 iterations (X-axis) where a single iteration refers
to one complete execution (predictions) of each approach. Moreover, each label (0, 5, 10,
...., 60) on the Y-axis represents a difference of five units. It can be observed for the first
iteration that the CNN-LSTM approach took 52 units of time for one complete execution,
whereas the proposed approach took only 18 units of time while employing three deep
learning models. Similarly, after 10 iterations, the average execution time for the CNN-
LSTM approach is calculated to be 51.50, whereas the proposed approach demonstrates an
average execution time of 17.20 units.
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Figure 5. Execution time of the CNN-LSTM and proposed approach on dataset A.

Table 10. Confusion matrix of activities—dataset A.

Predicted

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A
ct

ua
l

A1 490 12 3 0 0 0 0 0 0 0 0 0

A2 3 454 7 0 0 0 1 0 0 0 0 0

A3 3 1 410 0 0 0 0 0 0 0 0 0

A4 0 0 0 467 15 0 2 0 0 0 1 0

A5 0 0 0 35 540 0 1 0 0 0 0 0

A6 0 0 0 0 0 545 0 0 0 0 0 0

A7 0 4 0 6 1 0 18 0 0 0 0 0

A8 0 0 0 0 0 0 1 10 0 0 0 0

A9 0 0 0 0 0 0 0 0 27 0 5 0

A10 0 0 0 0 0 0 0 0 0 19 2 5

A11 0 0 0 0 0 0 0 0 3 0 36 6

A12 0 0 0 0 0 0 0 0 0 6 0 14
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Table 11. Confusion matrix of activities—dataset B.

Predicted

A1 A2 A3 A4 A5

A
ct

ua
l

A1 584 1 0 0 0

A2 0 619 7 0 0

A3 1 2 536 3 0

A4 0 0 0 378 14

A5 0 0 4 14 251

5. Conclusions

This paper proposed a hybrid multi-model framework for the efficient recognition
of basic as well as transitional activities. The proposed framework utilized multiple deep
learning models—i.e., LSTM, BiLSTM and CNN—followed by a decision fusion module
for the final classification of activities. The proposed approach has been tested on the
publicly available datasets for both basic and transition activities and compared with other
state-of-the art approaches employing the same datasets. The results exhibited that the
proposed approach outperformed the referenced approaches by achieving classification
accuracies of 96.11% on the HAPT dataset and 98.38% on the HumanActivity dataset
with transition and basic activities, respectively. For forthcoming research, the proposed
approach can be transformed into a parallel architecture to further improve the processing
speed for real-time implementation while putting some effort into compiling a dataset
consisting of complex transition activities.

Supplementary Materials: The datasets presented in this approach, along with the source code, are
publicly available on GitHub at https://github.com/sidhunk/NHDLM-HAR-BOTA.git.
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