1,728 research outputs found

    A Simple Derivation of AMP and its State Evolution via First-Order Cancellation

    Full text link
    We consider the linear regression problem, where the goal is to recover the vector x∈Rn\boldsymbol{x}\in\mathbb{R}^n from measurements y=Ax+w∈Rm\boldsymbol{y}=\boldsymbol{A}\boldsymbol{x}+\boldsymbol{w}\in\mathbb{R}^m under known matrix A\boldsymbol{A} and unknown noise w\boldsymbol{w}. For large i.i.d. sub-Gaussian A\boldsymbol{A}, the approximate message passing (AMP) algorithm is precisely analyzable through a state-evolution (SE) formalism, which furthermore shows that AMP is Bayes optimal in certain regimes. The rigorous SE proof, however, is long and complicated. And, although the AMP algorithm can be derived as an approximation of loop belief propagation (LBP), this viewpoint provides little insight into why large i.i.d. A\boldsymbol{A} matrices are important for AMP, and why AMP has a state evolution. In this work, we provide a heuristic derivation of AMP and its state evolution, based on the idea of "first-order cancellation," that provides insights missing from the LBP derivation while being much shorter than the rigorous SE proof

    Approximate message passing for nonconvex sparse regularization with stability and asymptotic analysis

    Full text link
    We analyse a linear regression problem with nonconvex regularization called smoothly clipped absolute deviation (SCAD) under an overcomplete Gaussian basis for Gaussian random data. We propose an approximate message passing (AMP) algorithm considering nonconvex regularization, namely SCAD-AMP, and analytically show that the stability condition corresponds to the de Almeida--Thouless condition in spin glass literature. Through asymptotic analysis, we show the correspondence between the density evolution of SCAD-AMP and the replica symmetric solution. Numerical experiments confirm that for a sufficiently large system size, SCAD-AMP achieves the optimal performance predicted by the replica method. Through replica analysis, a phase transition between replica symmetric (RS) and replica symmetry breaking (RSB) region is found in the parameter space of SCAD. The appearance of the RS region for a nonconvex penalty is a significant advantage that indicates the region of smooth landscape of the optimization problem. Furthermore, we analytically show that the statistical representation performance of the SCAD penalty is better than that of L1-based methods, and the minimum representation error under RS assumption is obtained at the edge of the RS/RSB phase. The correspondence between the convergence of the existing coordinate descent algorithm and RS/RSB transition is also indicated

    Support Recovery with Sparsely Sampled Free Random Matrices

    Full text link
    Consider a Bernoulli-Gaussian complex nn-vector whose components are Vi=XiBiV_i = X_i B_i, with X_i \sim \Cc\Nc(0,\Pc_x) and binary BiB_i mutually independent and iid across ii. This random qq-sparse vector is multiplied by a square random matrix \Um, and a randomly chosen subset, of average size npn p, p∈[0,1]p \in [0,1], of the resulting vector components is then observed in additive Gaussian noise. We extend the scope of conventional noisy compressive sampling models where \Um is typically %A16 the identity or a matrix with iid components, to allow \Um satisfying a certain freeness condition. This class of matrices encompasses Haar matrices and other unitarily invariant matrices. We use the replica method and the decoupling principle of Guo and Verd\'u, as well as a number of information theoretic bounds, to study the input-output mutual information and the support recovery error rate in the limit of n→∞n \to \infty. We also extend the scope of the large deviation approach of Rangan, Fletcher and Goyal and characterize the performance of a class of estimators encompassing thresholded linear MMSE and ℓ1\ell_1 relaxation

    Energy Efficiency in Communications and Networks

    Get PDF
    The topic of "Energy Efficiency in Communications and Networks" attracts growing attention due to economical and environmental reasons. The amount of power consumed by information and communication technologies (ICT) is rapidly increasing, as well as the energy bill of service providers. According to a number of studies, ICT alone is responsible for a percentage which varies from 2% to 10% of the world power consumption. Thus, driving rising cost and sustainability concerns about the energy footprint of the IT infrastructure. Energy-efficiency is an aspect that until recently was only considered for battery driven devices. Today we see energy-efficiency becoming a pervasive issue that will need to be considered in all technology areas from device technology to systems management. This book is seeking to provide a compilation of novel research contributions on hardware design, architectures, protocols and algorithms that will improve the energy efficiency of communication devices and networks and lead to a more energy proportional technology infrastructure

    NNLO Vertex Corrections in charmless hadronic B decays: Imaginary part

    Get PDF
    We compute the imaginary part of the 2-loop vertex corrections in the QCD Factorization framework for hadronic two-body decays as B -> pi pi. This completes the NNLO calculation of the imaginary part of the topological tree amplitudes and represents an important step towards a NNLO prediction of direct CP asymmetries in QCD Factorization. Concerning the technical aspects, we find that soft and collinear infrared divergences cancel in the hard-scattering kernels which demonstrates factorization at the 2-loop order. All results are obtained analytically including the dependence on the charm quark mass. The numerical impact of the NNLO corrections is found to be significant, in particular they lead to an enhancement of the strong phase of the colour-suppressed tree amplitude.Comment: 28 pages, 6 figures. v2: minor changes in Section 4.3, results unchanged, version accepted for publication in Nuclear Physics
    • …
    corecore