9 research outputs found

    Mechatronic design of the Twente humanoid head

    Get PDF
    This paper describes the mechatronic design of the Twente humanoid head, which has been realized in the purpose of having a research platform for human-machine interaction. The design features a fast, four degree of freedom neck, with long range of motion, and a vision system with three degrees of freedom, mimicking the eyes. To achieve fast target tracking, two degrees of freedom in the neck are combined in a differential drive, resulting in a low moving mass and the possibility to use powerful actuators. The performance of the neck has been optimized by minimizing backlash in the mechanisms, and using gravity compensation. The vision system is based on a saliency algorithm that uses the camera images to determine where the humanoid head should look at, i.e. the focus of attention computed according to biological studies. The motion control algorithm receives, as input, the output of the vision algorithm and controls the humanoid head to focus on and follow the target point. The control architecture exploits the redundancy of the system to show human-like motions while looking at a target. The head has a translucent plastic cover, onto which an internal LED system projects the mouth and the eyebrows, realizing human-like facial expressions

    A Full Scale Camera Calibration Technique with Automatic Model Selection – Extension and Validation

    Get PDF
    This thesis presents work on the testing and development of a complete camera calibration approach which can be applied to a wide range of cameras equipped with normal, wide-angle, fish-eye, or telephoto lenses. The full scale calibration approach estimates all of the intrinsic and extrinsic parameters. The calibration procedure is simple and does not require prior knowledge of any parameters. The method uses a simple planar calibration pattern. Closed-form estimates for the intrinsic and extrinsic parameters are computed followed by nonlinear optimization. Polynomial functions are used to describe the lens projection instead of the commonly used radial model. Statistical information criteria are used to automatically determine the complexity of the lens distortion model. In the first stage experiments were performed to verify and compare the performance of the calibration method. Experiments were performed on a wide range of lenses. Synthetic data was used to simulate real data and validate the performance. Synthetic data was also used to validate the performance of the distortion model selection which uses Information Theoretic Criterion (AIC) to automatically select the complexity of the distortion model. In the second stage work was done to develop an improved calibration procedure which addresses shortcomings of previously developed method. Experiments on the previous method revealed that the estimation of the principal point during calibration was erroneous for lenses with a large focal length. To address this issue the calibration method was modified to include additional methods to accurately estimate the principal point in the initial stages of the calibration procedure. The modified procedure can now be used to calibrate a wide spectrum of imaging systems including telephoto and verifocal lenses. Survey of current work revealed a vast amount of research concentrating on calibrating only the distortion of the camera. In these methods researchers propose methods to calibrate only the distortion parameters and suggest using other popular methods to find the remaining camera parameters. Using this proposed methodology we apply distortion calibration to our methods to separate the estimation of distortion parameters. We show and compare the results with the original method on a wide range of imaging systems

    Laser and Camera Intercalibration Techniques for Multi-Sensorized Vehicles

    Get PDF
    This thesis presents the topic of the extrinsic calibration of active and passive sensors which are used on modern intelligent vehicles to get a rich perception of the surrounding environment. An in-depth analysis of the intercalibration procedure was conduced with respect to the data fusion accuracy. Several laser and camera intercalibration procedure are presented and a new method based on triangular calibration target is detailed. Finally, a calibration procedure is proposed; tested on different prototypes (e.g., BRAiVE and VIAC vehicles) with different sensor suits

    INTELLIGENT VISION-BASED NAVIGATION SYSTEM

    Get PDF
    This thesis presents a complete vision-based navigation system that can plan and follow an obstacle-avoiding path to a desired destination on the basis of an internal map updated with information gathered from its visual sensor. For vision-based self-localization, the system uses new floor-edges-specific filters for detecting floor edges and their pose, a new algorithm for determining the orientation of the robot, and a new procedure for selecting the initial positions in the self-localization procedure. Self-localization is based on matching visually detected features with those stored in a prior map. For planning, the system demonstrates for the first time a real-world application of the neural-resistive grid method to robot navigation. The neural-resistive grid is modified with a new connectivity scheme that allows the representation of the collision-free space of a robot with finite dimensions via divergent connections between the spatial memory layer and the neuro-resistive grid layer. A new control system is proposed. It uses a Smith Predictor architecture that has been modified for navigation applications and for intermittent delayed feedback typical of artificial vision. A receding horizon control strategy is implemented using Normalised Radial Basis Function nets as path encoders, to ensure continuous motion during the delay between measurements. The system is tested in a simplified environment where an obstacle placed anywhere is detected visually and is integrated in the path planning process. The results show the validity of the control concept and the crucial importance of a robust vision-based self-localization process

    Calibration of non-conventional imaging systems

    Get PDF
    corecore