1,214 research outputs found

    A Primer on the Tools and Concepts of Computable Economics

    Get PDF
    Computability theory came into being as a result of Hilbert's attempts to meet Brouwer's challenges, from an intuitionistc and constructive standpoint, to formalism as a foundation for mathematical practice. Viewed this way, constructive mathematics should be one vision of computability theory. However, there are fundamental differences between computability theory and constructive mathematics: the Church-Turing thesis is a disciplining criterion in the former and not in the latter; and classical logic - particularly, the law of the excluded middle - is not accepted in the latter but freely invoked in the former, especially in proving universal negative propositions. In Computable Economic an eclectic approach is adopted where the main criterion is numerical content for economic entities. In this sense both the computable and the constructive traditions are freely and indiscriminately invoked and utilised in the formalization of economic entities. Some of the mathematical methods and concepts of computable economics are surveyed in a pedagogical mode. The context is that of a digital economy embedded in an information society

    Hypergraph conditions for the solvability of the ergodic equation for zero-sum games

    Full text link
    The ergodic equation is a basic tool in the study of mean-payoff stochastic games. Its solvability entails that the mean payoff is independent of the initial state. Moreover, optimal stationary strategies are readily obtained from its solution. In this paper, we give a general sufficient condition for the solvability of the ergodic equation, for a game with finite state space but arbitrary action spaces. This condition involves a pair of directed hypergraphs depending only on the ``growth at infinity'' of the Shapley operator of the game. This refines a recent result of the authors which only applied to games with bounded payments, as well as earlier nonlinear fixed point results for order preserving maps, involving graph conditions.Comment: 6 pages, 1 figure, to appear in Proc. 54th IEEE Conference on Decision and Control (CDC 2015

    Unsolvability Cores in Classification Problems

    Full text link
    Classification problems have been introduced by M. Ziegler as a generalization of promise problems. In this paper we are concerned with solvability and unsolvability questions with respect to a given set or language family, especially with cores of unsolvability. We generalize the results about unsolvability cores in promise problems to classification problems. Our main results are a characterization of unsolvability cores via cohesiveness and existence theorems for such cores in unsolvable classification problems. In contrast to promise problems we have to strengthen the conditions to assert the existence of such cores. In general unsolvable classification problems with more than two components exist, which possess no cores, even if the set family under consideration satisfies the assumptions which are necessary to prove the existence of cores in unsolvable promise problems. But, if one of the components is fixed we can use the results on unsolvability cores in promise problems, to assert the existence of such cores in general. In this case we speak of conditional classification problems and conditional cores. The existence of conditional cores can be related to complexity cores. Using this connection we can prove for language families, that conditional cores with recursive components exist, provided that this family admits an uniform solution for the word problem

    Characterizing the easy-to-find subgraphs from the viewpoint of polynomial-time algorithms, kernels, and Turing kernels

    Get PDF
    We study two fundamental problems related to finding subgraphs: (1) given graphs G and H, Subgraph Test asks if H is isomorphic to a subgraph of G, (2) given graphs G, H, and an integer t, PACKING asks if G contains t vertex-disjoint subgraphs isomorphic to H. For every graph class F, let F-Subgraph Test and F-Packing be the special cases of the two problems where H is restricted to be in F. Our goal is to study which classes F make the two problems tractable in one of the following senses: - (randomized) polynomial-time solvable, - admits a polynomial (many-one) kernel (that is, has a polynomial-time preprocessing procedure that creates an equivalent instance whose size is polynomially bounded by the size of the solution), or - admits a polynomial Turing kernel (that is, has an adaptive polynomial-time procedure that reduces the problem to a polynomial number of instances, each of which has size bounded polynomially by the size of the solution). To obtain a more robust setting, we restrict our attention to hereditary classes F. It is known that if every component of every graph in F has at most two vertices, then F-Packing is polynomial-time solvable, and NP-hard otherwise. We identify a simple combinatorial property (every component of every graph in F either has bounded size or is a bipartite graph with one of the sides having bounded size) such that if a hereditary class F has this property, then F-Packing admits a polynomial kernel, and has no polynomial (many-one) kernel otherwise, unless the polynomial hierarchy collapses. Furthermore, if F does not have this property, then F-Packing is either WK[1]-hard, W[1]-hard, or Long Path-hard, giving evidence that it does not admit polynomial Turing kernels either. For F-Subgraph Test, we show that if every graph of a hereditary class F satisfies the property that it is possible to delete a bounded number of vertices such that every remaining component has size at most two, then F-Subgraph Test is solvable in randomized polynomial time and it is NP-hard otherwise. We introduce a combinatorial property called (a, b, c, d)-splittability and show that if every graph in a hereditary class F has this property, then F-Subgraph Test admits a polynomial Turing kernel and it is WK[1]-hard, W[1]-hard, or Long Path-hard otherwise. We do not give a complete characterization of the cases when F-Subgraph Test admits polynomial many-one kernels, but show examples that this question is much more fragile than the characterization for Turing kernels

    A differential analysis of the power flow equations

    Get PDF
    The AC power flow equations are fundamental in all aspects of power systems planning and operations. They are routinely solved using Newton-Raphson like methods. However, there is little theoretical understanding of when these algorithms are guaranteed to find a solution of the power flow equations or how long they may take to converge. Further, it is known that in general these equations have multiple solutions and can exhibit chaotic behavior. In this paper, we show that the power flow equations can be solved efficiently provided that the solution lies in a certain set. We introduce a family of convex domains, characterized by Linear Matrix Inequalities, in the space of voltages such that there is at most one power flow solution in each of these domains. Further, if a solution exists in one of these domains, it can be found efficiently, and if one does not exist, a certificate of non-existence can also be obtained efficiently. The approach is based on the theory of monotone operators and related algorithms for solving variational inequalities involving monotone operators. We validate our approach on IEEE test networks and show that practical power flow solutions lie within an appropriately chosen convex domain.Comment: arXiv admin note: text overlap with arXiv:1506.0847

    Orbit decidability and the conjugacy problem for some extensions of groups

    No full text
    Given a short exact sequence of groups with certain conditions, 1 ? F ? G ? H ? 1, weprove that G has solvable conjugacy problem if and only if the corresponding action subgroupA 6 Aut(F) is orbit decidable. From this, we deduce that the conjugacy problem is solvable,among others, for all groups of the form Z2?Fm, F2?Fm, Fn?Z, and Zn?A Fm with virtually solvable action group A 6 GLn(Z). Also, we give an easy way of constructing groups of the form Z4?Fn and F3?Fn with unsolvable conjugacy problem. On the way, we solve the twisted conjugacy problem for virtually surface and virtually polycyclic groups, and give an example of a group with solvable conjugacy problem but unsolvable twisted conjugacy problem. As an application, an alternative solution to the conjugacy problem in Aut(F2) is given

    Some recent results in the analysis of greedy algorithms for assignment problems

    Get PDF
    We survey some recent developments in the analysis of greedy algorithms for assignment and transportation problems. We focus on the linear programming model for matroids and linear assignment problems with Monge property, on general linear programs, probabilistic analysis for linear assignment and makespan minimization, and on-line algorithms for linear and non-linear assignment problems
    corecore