297,527 research outputs found

    Disparity and Optical Flow Partitioning Using Extended Potts Priors

    Full text link
    This paper addresses the problems of disparity and optical flow partitioning based on the brightness invariance assumption. We investigate new variational approaches to these problems with Potts priors and possibly box constraints. For the optical flow partitioning, our model includes vector-valued data and an adapted Potts regularizer. Using the notation of asymptotically level stable functions we prove the existence of global minimizers of our functionals. We propose a modified alternating direction method of minimizers. This iterative algorithm requires the computation of global minimizers of classical univariate Potts problems which can be done efficiently by dynamic programming. We prove that the algorithm converges both for the constrained and unconstrained problems. Numerical examples demonstrate the very good performance of our partitioning method

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Iterated regularization methods for solving inverse problems

    Get PDF
    Typical inverse problems are ill-posed which frequently leads to difficulties in calculatingnumerical solutions. A common approximation method to solve ill-posed inverse problemsis iterated Tikhonov-Lavrentiev regularization.We examine iterated Tikhonov-Lavrentiev regularization and show that, in the casethat regularity properties are not globally satisfied, certain projections of the error converge faster than the theoretical predictions of the global error. We also explore the sensitivity of iterated Tikhonov regularization to the choice of the regularization parameter. We show that by calculating higher order sensitivities we improve the accuracy. We present a simple to implement algorithm that calculates the iterated Tikhonov updates and the sensitivities to the regularization parameter. The cost of this new algorithm is one vector addition and one scalar multiplication per step more than the standard iterated Tikhonov calculation.In considering the inverse problem of inverting the Helmholz-differential filter (with filterradius δ), we propose iterating a modification to Tikhonov-Lavrentiev regularization (withregularization parameter α and J iteration steps). We show that this modification to themethod decreases the theoretical error bounds from O(α(δ^2 +1)) for Tikhonov regularizationto O((αδ^2)^(J+1) ). We apply this modified iterated Tikhonov regularization method to theLeray deconvolution model of fluid flow. We discretize the problem with finite elements inspace and Crank-Nicolson in time and show existence, uniqueness and convergence of thissolution.We examine the combination of iterated Tikhonov regularization, the L-curve method,a new stopping criterion, and a bootstrapping algorithm as a general solution method inbrain mapping. This method is a robust method for handling the difficulties associated withbrain mapping: uncertainty quantification, co-linearity of the data, and data noise. Weuse this method to estimate correlation coefficients between brain regions and a quantified performance as well as identify regions of interest for future analysis
    • …
    corecore