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ITERATED REGULARIZATION METHODS FOR SOLVING INVERSE

PROBLEMS

Nathaniel Mays, PhD

University of Pittsburgh, 2011

Typical inverse problems are ill-posed which frequently leads to difficulties in calculating

numerical solutions. A common approximation method to solve ill-posed inverse problems

is iterated Tikhonov-Lavrentiev regularization.

We examine iterated Tikhonov-Lavrentiev regularization and show that, in the case

that regularity properties are not globally satisfied, certain projections of the error converge

faster than the theoretical predictions of the global error. We also explore the sensitivity

of iterated Tikhonov regularization to the choice of the regularization parameter. We show

that by calculating higher order sensitivities we improve the accuracy. We present a simple

to implement algorithm that calculates the iterated Tikhonov updates and the sensitivities

to the regularization parameter. The cost of this new algorithm is one vector addition and

one scalar multiplication per step more than the standard iterated Tikhonov calculation.

In considering the inverse problem of inverting the Helmholz-differential filter (with filter

radius δ), we propose iterating a modification to Tikhonov-Lavrentiev regularization (with

regularization parameter α and J iteration steps). We show that this modification to the

method decreases the theoretical error bounds from O(α(δ2 +1)) for Tikhonov regularization

to O((αδ2)J+1). We apply this modified iterated Tikhonov regularization method to the

Leray deconvolution model of fluid flow. We discretize the problem with finite elements in

space and Crank-Nicolson in time and show existence, uniqueness and convergence of this

solution.

We examine the combination of iterated Tikhonov regularization, the L-curve method,
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a new stopping criterion, and a bootstrapping algorithm as a general solution method in

brain mapping. This method is a robust method for handling the difficulties associated with

brain mapping: uncertainty quantification, co-linearity of the data, and data noise. We

use this method to estimate correlation coefficients between brain regions and a quantified

performance as well as identify regions of interest for future analysis.
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1.0 INTRODUCTION

“Most people, if you describe a train of events to them, will tell you what the result would

be. They can put those events together in their minds, and argue from them that something

will come to pass. There are few people, however, who, if you told them a result, would be

able to evolve from their own inner consciousness what the steps were which led up to that

result.” (Sherlock Holmes)

Inverse problems (complementing direct problems) are ubiquitous. Any observable phys-

ical phenomenon (direct problem) has the associated inverse problem, “What caused this

effect?” Specific examples of inverse problems are: parameter identification - given a model

with tuning parameters and measurements of the output of the model, what values of the

parameters best correspond to the measurements; image processing - given an image that

has been blurred, find the original image; wave scattering - given a source of vibration on

the surface and measurements of the returning waves, determine the underlying structure

that the waves pass through.

Hadamard defined a well-posed problem to be a problem with the existence of a unique

solution that depends continuously on the problem data, and an ill-posed problem is one

that violates one or more of those conditions. Inverse problems are typically ill-posed. Many

methods, see [23], have been proposed to give approximate solutions when no solution exists.

Two archetypical examples are the linear and non-linear inverse problems.

Problem 1.0.1 (Linear inverse problem). Given Hilbert spaces X and Y , linear operator

A : X → Y , data y ∈ Range(A), and noise e ∈ Y , we denote b = y + e. The linear inverse

1



problem is to find x satisfying

Ax = b. (1.1)

Problem 1.0.2 (Non-linear inverse problem). Given Hilbert spaces X and Y , non-linear

operator F : X → Y , data y ∈ Range(F ), and noise e ∈ Y , we denote b = y + e. The

non-linear inverse problem is to find x satisfying

F (x) = b. (1.2)

Definition 1.0.3 (Condition number). The condition number κ(A) of a linear operator A

with respect to an operator norm ‖ · ‖ is

κ(A) =

‖A
−1‖‖A‖ A is nonsingular

∞ A is singular.

(1.3)

An operator is said to be perfectly conditioned if κ(A) = 1, well-conditioned if κ(A) is small,

and ill-conditioned if κ(A) is large.

A discussion on the ill-conditioning of non-linear equations can be found in [75].

Proposition 1.0.4. Let x∗, b, e ∈ Rn and A ∈ Rn×n. If Ax∗ = b with b 6= 0 and x̃ is a

calculated solution to Ax = b+ e, then the relative error is bounded.

‖x∗ − x̃‖
‖x∗‖

≤ κ(A)
‖e‖
‖b‖

. (1.4)

Proof. This is a well-known result, see [46, 75].

Definition 1.0.5 (Argmin). The argmin of a functional f : X → R is the set of values in

X defined by

argmin
x∈X

f(x) = {x ∈ X|f(x) ≤ f(y), ∀y ∈ X}.

If argmin
x∈X

f(x) contains a single element, then let argmin
x∈X

f(x) denote that element.

One method of solving inverse problems is ordinary least squares (OLS).

2



Algorithm 1.0.6 (Ordinary Least Squares). The least squares solution to Problem 1.0.1 is

found by solving the minimization problem

xOLS = argmin
x∈X

‖Ax− b‖2.

An equivalent formulation for the least squares solution to Problem 1.0.1 is to solve for xOLS

in

ATAxOLS = AT b,

where AT denotes the transpose of the operator A. The least squares solution to Problem

1.0.2 is found by solving the minimization problem (if the minimum exists)

xOLS ∈ argmin
x∈X

‖F (x)− b‖2.

Remark 1.0.7. In the special case of the spectral norm and if A is a normal operator

(ATA = AAT ), then κ(ATA) = (κ(A))2. Therefore, in the case that A is normal and

ill-conditioned, then ordinary least squares becomes a more difficult problem to solve.

One method for approximating the solution to an ill-posed problem is Tikhonov regular-

ization.

Definition 1.0.8 (Tikhonov Regularization - linear). For a given regularization parameter

α > 0, the Tikhonov solution xα to Problem 1.0.1 is calculated by solving

(ATA+ αI)x0 = AT b. (1.5)

Solving (1.5) for xα is equivalent to solving the minimization problem

x0 = argmin
x∈X

‖Ax− b‖2 + α‖x‖2. (1.6)

Equation (1.6) shows that Tikhonov regularization and the choice of α is a balance

between minimizing the residual (accuracy) and minimizing the size of the solution (stabil-

ity). In another method, iterated Tikhonov regularization, the regularization parameter α

is chosen for stability and iterates to regain accuracy.

3



Definition 1.0.9 (Iterated Tikhonov regularization). For a given regularization parameter

α > 0 and stopping parameter J ∈ N, the iterated Tikhonov solutions xj for j = 1, . . . , J to

Problem 1.0.1 are calculated by solving

(ATA+ αI)x0 = AT b

(ATA+ αI)(xj − xj−1) = AT (b− Axj−1). (1.7)

Solving (1.7) for xj for j = 1, . . . , J is equivalent to solving the minimization problem

x0 = argmin
x∈X

‖Ax− b‖2 + α‖x‖2

xj = argmin
x∈X

‖Ax− b‖2 + α‖x− xj−1‖2. (1.8)

The defect correction method (Algorithm 1.0.10 and [97]) is an iterative method to find

the solution to Problem 1.0.1 (and generalized to non-linear problems in [97]).

Algorithm 1.0.10 (Defect Correction Method). Let A, x, and b be as in Problem 1.0.1.

Let G be an approximate inverse of A. Then calculate the approximation x0 by

x0 = Gb.

Given xj−1, the next approximation xj is calculated by

xj − xj−1 = x0 −GAxj−1

Remark 1.0.11 (Connection of iterated Tikhonov regularization to the defect correction

method). The defect correction method is an iterative method for finding an approximation

to the solution of Problem 1.0.1. Choosing G = (ATA + αI)−1AT , the defect correction

method reduces to iterated Tikhonov regularization.

4



Equations (1.5) and (1.7) are valid only for the linear Problem 1.0.1, but (1.6) and (1.8)

are generalizable to the nonlinear Problem 1.0.2. The Tikhonov solution to Problem 1.0.2 is

found by solving the minimization problem

xα = argmin
x∈X

‖F (x)− b‖2 + α‖x‖2,

and the iterated Tikhonov solution is found by taking x−1 = 0 and solving

xi = argmin
x∈X

‖F (x)− b‖2 + α‖x− xi−1‖2.

Algorithm 1.0.12 (Iterated Tikhonov-Lavrentiev regularization). If the operator A in Prob-

lem 1.0.1 is symmetric and non-negative definite, then for a given regularization parameter

α > 0 and stopping parameter J ∈ N, the iterated Tikhonov-Lavrentiev solutions xj for

j = 1, . . . , J to Problem 1.0.1 are calculated by solving

(A+ αI)x0 = AT b

(A+ αI)(xj − xj−1) = b− Axj−1. (1.9)

Proposition 1.0.13 (Error bound for iterated Tikhonov-Lavrentiev regularization). Let A,

b, α and xj be as in Algorithm 1.0.12. Suppose that e = 0, that is b = Ax for some x ∈ X.

If x ∈ Range(Aβ) for some β ≥ 0 (regularity condition), then, for any J ≤ β, there exists a

constant C(J) such that

‖x− xJ‖ ≤ C(J)αJ+1. (1.10)

Furthermore, for any J > β, there exists a constant C(J) such that

‖x− xJ‖ ≤ C(J)αβ+1. (1.11)

Proof. This is a summary of results from [21,23,51,107].
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Chapter 2 presents a new superconvergence property for iterated Tikhonov-Lavrentiev

regularization. Previous work [23] has shown that given sufficient regularity of the solution

(x ∈ Range(AJ) in Proposition 1.0.13), then the error bound to the problem with e = 0 is

‖x− xJ‖ = O(αJ+1) for Tikhonov-Lavrentiev regularization. However, when the regularity

condition is violated (x ∈ Range(Aβ) for β < J), then further iterations will not improve the

error bound (‖x − xJ‖ = O(αβ+1)). Theorem 2.2.11 shows that if the regularity properties

are not globally satisfied, then there exists a projection P such that ‖P (x−xJ)‖ = O(αJ+1).

We also explore the sensitivity of iterated Tikhonov-Lavrentiev regularization to the

choice of the regularization parameter chosen. We show that higher order sensitivities correct

for accuracy. Algorithm 2.3.2 is a simple-to-implement procedure that calculates the iterated

Tikhonov-Lavrentiev updates and the sensitivities to the regularization parameter at the cost

of one vector addition and one scalar multiplication per step beyond that of the standard

iterated Tikhonov-Lavrentiev calculation.

Chapter 3 examines the problem of deconvolving the Helmholz differential filter (with

filter radius δ). In [67], it was shown that the error in the solution when using Tikhonov-

Lavrentiev regularization was O(α(1 + δ2)), but the error could be reduced to O(αδ2) by

using a modified Tikhonov-Lavrentiev regularization that exploits the properties of the filter.

Algorithm 3.3.1 is an extension of the algorithm presented in [67] to an iterated method, and

we show that for J iteration steps, the error is O((αδ2)J+1). Theorem 3.4.2 is a stopping

criteria of the iteration process to prevent convergence to a noisy solution. We provide

numerical examples to verify these error bounds and the stopping condition.

Chapter 4 presents a general theory for regularization models of the Navier-Stokes equa-

tions based on the Leray deconvolution model with a general deconvolution operator designed

to fit a few important key properties listed in Assumption 4.2.4. We study the mathemati-

cal properties of these operators and show that the modified iterated Tikhonov-Lavrentiev

operator from Chapter 3 satisfies Assumption 4.2.4. An existence theory is derived for the

family of models, and a rigorous convergence theory is derived for the resulting algorithms.

Numerical experiments supporting our theoretical results are presented for the case of the

modified iterated Tikhonov-Lavrentiev operator mentioned above.

Chapter 5 applies iterated Tikhonov regularization and the L-curve method in Algorithm
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5.1.1, the Brain-Gait Correlator, a useful tool for examining the problem of brain mapping.

There is consistent evidence that smaller brain volume is associated with slowing gait in older

adults. Finding a reliable, precise and localized spatial correlation of neuroimaging data with

gait data is a challenging problem. This is difficult due to the uncertainty, co-linearity, and

sparsity. The challenge increases as the spatial description becomes more localized.

This chapter gives a reliable and accurate algorithm for dealing with the uncertainty,

approximate co-linearity and data noise in this problem. We propose Algorithm 5.1.1, the

Brain-Gait Correlator, which combines iterated Tikhonov regularization and the L-curve

method. Algorithm 5.1.9 is a new stopping criterion that we show prevents iterated Tikhonov

regularization from converging to the noisy solution. As a first test of the algorithm, we val-

idate our initial findings of the spatial distribution of volumetric brain loss in relationship

with gait speed. Next, we compare and present results of a combination of iterated Tikhonov

regularization with the L-curve method applied to real data derived from two cohorts of older

adults. We demonstrate that the L-curve method automatically chooses additional regular-

ization for enhanced stability, which will dampen the effects of ill conditioning. Finally,

the analysis indicates that smaller volume of the dorsolateral prefrontal cortex in the left

hemisphere is associated with slower gait consistent with prior studies. This algorithm is

more robust with increased levels of noise than least squares regression. The algorithm pro-

duces reliable results when least squares regression fails, as shown by an example where least

squares regression is not a sufficiently robust solution method by adding 10% noise into a

problem and observing 9,324,000% error in the solution.
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2.0 ITERATED TIKHONOV REGULARIZATION

“[Paradoxes] can be traced to the use of plausible arguments. Among these are the arguments

that ‘small causes produce small effects’ and that ‘symmetric causes produce symmetric

effects’.” (G. Birkhoff)

2.1 INTRODUCTION

Inverse problems and other ill-posed problems arise in application areas in material, envi-

ronmental, and energy research and development [23,45,53,57,103].

Problem 2.1.1 (Noisy inverse problem). Let X be a Hilbert space and G : X → X a

linear, compact operator. Suppose that φtrue ∈ X and Gφtrue = φ̄, however only noisy data

y = φ̄+noise is known. As accurately as possible, determine the noise-free solution φtrue ∈ X

φtrue ∈ X satisfying Gφtrue = φ̄:

Gφ = φ̄+ noise. (2.1)

In the case of multiple solutions to (2.1), the minimum norm solution is chosen.

Our motivation for considering Problem 2.1.1, arises in parameter identification [22,23],

deconvolution in image processing [11], and the closure problem in turbulence modeling

[10, 28, 59]. An example of the type of operator from Problem 2.1.1 is the differential filter

in Example 2.1.2 [19,27].
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Example 2.1.2. An operator satisfying Problem 2.1.1 is the Helmholz differential filter. Let

Ω be a regular, bounded, polyhedral domain. The differential filter G : L2(Ω) → L2(Ω) is

defined by Gφtrue = φ̄ where

−δ2∆φ̄+ φ̄ = φ.

One family of solution methods to Problem 2.1.1, regularization methods, require a source

condition on the true solution to obtain error estimates.

Definition 2.1.3 (Source condition). We say that the true solution φtrue to Problem 2.1.1

satisfies a source condition if for some β > 0,

φtrue ∈ Range(Gβ). (2.2)

If the solution satisfies the source condition for β ≥ 1, then iteration of the regularization

methods yields better error bounds. However, if the source condition is not satisfied for a

large enough β and an iterative method is applied, then traditional error analysis methods

predict worse global errors with the number of iterations. We show that even without the

source condition, some projections of the error decrease with further iterations.

The fundamental difficulties in solving Problem 2.1.1 are that (i) G is not generally

stably invertible and (ii) the best estimate of φ̄ is generally not in Range(G) due to noise

contamination.

When φtrue is smooth in the sense of satisfying a source condition, φtrue ∈ Range(Gβ)

for some β > 0, highly effective methods are known for solving Eq. (2.1). We focus our

analysis on the case of low regularity solutions. Examples of this are using the differential

filter applied to solutions of the Navier-Stokes equations [25,54] or applying a Gaussian filter

to a discontinuous L2 image [11,88].

A full theory of the global error under the source condition given above for various

regularization schemes is known, see e.g. [1,4,23,41,70,86,106,109]. We present herein several

extensions to the error analysis for a family of iterative regularization schemes including

• superconvergence in large scales of solution space without source conditions and

• characterization of sensitivity in parameter selection.
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A particular iterated regularization method considered is the iterated Tikhonov-Lavrentiev

regularization method.

Definition 2.1.4 (Iterated Tikhonov-Lavrentiev regularization). For operator G : X → X,

we define φj := Djy for j = 0, 1, . . . by

φ0 = (G+ αI)−1y, φj − φj−1 = (G+ αI)−1(y −Gφj−1). (2.3)

However, this generalizes into a family of iterated regularization operators. Let D0 :

X → X denote a particular regularization operator (e.g. D0 = (G + αI)−1 for Tikhonov-

Lavrentiev or D0 = (G∗G + αI)−1G∗ for Tikhonov). For j = 0, 1, . . ., define the iterated

regularization Dj : X → X (derived from D0) by φj := Djy through:

φ0 = D0y, φj − φj−1 = D0(y −Gφj−1). (2.4)

See Condition 2.1.10 in Section 2.1.2 for a precise setting for the operators G and D0.

Practical problems having limited regularity are problematic when obtaining error es-

timates for iterated regularization methods. For example, it is well known (see [51] and

Section 2.1.2 that follows) that if φj represents the j-th iterated Tikhonov regularization

approximation, φtrue ∈ Range(G∗G)β for some 0 < β ≤ J (source condition), and the noise

is bounded by ‖ε‖X ≤ ε0 <∞, then

‖φtrue − φJ‖X ≤ α−1/2(J + 1)ε0 + αβ+1C(J).

Consequently, if β < 1, the present global error theory for iterated Tikhonov gives a worse

error bound for each step beyond J = 0. However, we show that even in the case of

limited regularity, iterated Tikhonov regularization continues to improve the approximation

for some components of the approximate solution. Results of this type are often called

superconvergence because they show a greater rate of convergence by some components of

the approximation than predicted by the global theory [90].

In Section 2.1.1, we provide a brief description of our main motivation, the closure prob-

lem in turbulence modeling, because the solution does not satisfy the regularity conditions

necessary for applying iterated deconvolution methods [54]. In Section 2.1.2, we introduce

several approximate deconvolution operators satisfying Eq. (2.4) and Condition 2.1.10. In
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Section 2.2, we present and prove our main result – recovery of optimal accuracy of iterated

regularization methods defined by Eq. (2.4) and Condition 2.1.10 when the source condition

is not satisfied.

In Section 2.3.1, we extend results by Leonov [62] from Tikhonov regularization to it-

erated Tikhonov-Lavrentiev. In particular, we prove that each step of iterated Tikhonov-

Lavrentiev computes the sensitivity of the approximation with respect to the regularization

parameter α. There are two approaches to the interpretation: either the sensitivity are com-

puted and used to update the approximations, or the updates are computed and generate

the sensitivities. We propose an associated algorithmic modification to iterated Tikhonov-

Lavrentiev regularization. In Section 2.3.2, by direct calculation for our motivating problem

of the deconvolution of turbulent velocities, we confirm the classical, global error estimate for

iterated Tikhonov-Lavrentiev and the optimal convergence in large scales consistent with su-

perconvergence theory presented in Section 2.2.3. The theoretical predictions are confirmed

with a numerical test in Section 2.4.

2.1.1 Approximate deconvolution in turbulence modeling

We are motivated by the closure problem in modeling turbulent fluid flow with the Navier-

Stokes equations [10, 28, 59]. Accuracy for this application improves with additional decon-

volution steps (minimally one per time step) inside a numerically intensive calculation (small

time steps and long time calculations are required for computing turbulent flows) [16]. The

solutions are not generally regular [25, 54]. Moreover, the noise ε includes the error in the

turbulence model used as well as numerical errors and their successive accumulation through

time evolution. Consequently, an exact characterization of the noise is not feasible. We show

that iterated Tikhonov-Lavrentiev is particularly well adapted for this type of situation.

Definition 2.1.5 (Fourier series). Let u(x, t) : (0, π)3 × [0, T ]→ R3 be a π-periodic velocity

field. Denote û(k, t) = π−3
∫
u(x, t)eik·xdx to be the Fourier coefficients where k = (k1, k2, k3)

is the wave number vector and k = |k| is the magnitude of k. Then

u(x, t) =
∑
k∈Z3

û(k, t)e−ik·x =
∑
k

 ∑
k−1<|k|≤k

û(k, t)e−ik·x

 . (2.5)
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Definition 2.1.6 (Space of large scales). For a length scale δ, define the space of large scales

to be

Xlarge := span
{
eik·x : |k| ≤ 1/δ

}
. (2.6)

According to the well accepted K41 theory of turbulence (a phenomenological theory

in good agreement with experimental data [73]), most of the kinetic energy of the flow

resides in the large scales corresponding to small wave numbers. See Section 2.3.2 for more

details. Consequently, we consider a filter G with filter radius δ > 0 and associated cutoff

frequency 1/δ. The resolved or large scales in a turbulent flow are those length scales above

δ or equivalently, those with frequencies below 1/δ. As a specific example, we consider the

differential filter.

Definition 2.1.7 (Differential Filter). The differential filter G : L2((0, π)3) → L2((0, π)3)

for a filter radius δ is defined as G = (−δ2∆ + 1)−1. For any u ∈ L2((0, π)3)

Gu =
∑
k

∑
|k|=k

(δ2k2 + 1)−1û(k, t)e−ik·x

 .

It is well-known that G defined here is a linear, compact operator [59].

Definition 2.1.8 (Large scale projection). Define the L2- orthogonal projection into the

large scales P : L2(Ω)→ Xlarge by

P

∑
k∈Z3

û(k,t)eik·x

 =
∑
|k|≤1/δ

û(k,t)eik·x.

The superconvergence result proved in Theorem 2.3.12 for iterated Tikhonov-Lavrentiev

regularization states

‖P (φtrue − φJ)‖X ≤ 2
√

2ε0 + αJ+1C(J).

That is, the error in the energetically important resolved scales, k < 1/δ, is O(αJ+1), and

the influence of noise in the large scales does not grow with increased iterations.
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2.1.2 Approximation by regularization

We consider a family of iterated regularization operators for the approximation of Eq. (2.1).

Following this, we provide a brief overview of one well-known method fitting this framework,

Tikhonov-Lavrentiev regularization.

Definition 2.1.9. For G : X → X, we say that G ≥ 0 if G is self-adjoint and

(Gv, v)X ≥ 0, ∀v ∈ X. (2.7)

Condition 2.1.10. (Iterated regularization approximations) Let G : X → X be compact,

self-adjoint, non-negative definite linear operator. Let f : R → R be a continuous function

and D0 : X → X be a regularization operator such that D0 = f(G) is self adjoint, positive

definite, bounded and it satisfies

‖G−D−1
0 ‖L(X,X) ≤ α, λ(D0) ≤ α−1, λ(GD0) ≤ 1. (2.8)

The spectral theorem implies that G and D0 commute, because D0 is a continuous

function of the self-adjoint operator G. Hence, λ(GD0) = λ(G)λ(D0) = λ(G)f(λ(G)).

The approximation operator associated with iterated Tikhonov-Lavrentiev regularization,

developed and analyzed in [21, 51, 106, 107], satisfies these conditions (as shown in Section

2.2.1).

Iterated Tikhonov-Lavrentiev regularization, corresponding to J > 0 and D0 = (G +

αI)−1, decouples the stability from accuracy by allowing for conservatively large α > 0

selection to ensure stability and successive defect correction updates to recover accuracy.

Algorithm 2.1.11 (Iterated Tikhonov-Lavrentiev). Select α > 0 and fix J ∈ N.

1. Solve for φ0 satisfying

(G+ αI)φ0 = y (2.9)

2. For j = 1, . . . , J , solve for φj satisfying

(G+ αI)(φj − φj−1) = y −Gφj−1 (2.10)
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Note that in the iterated Tikhonov-Lavrentiev method, j is necessarily terminated at a

moderate value. The important question is thus convergence as α→ 0, and not with respect

to J . There is a complete theory of the global error under source conditions, e.g [51]. We

summarize results from [21,23,51,107] here.

Theorem 2.1.12 (Global error estimate). Suppose that G is non-negative definite. Fix

α > 0. Let eJ := φtrue − φJ . Suppose, for some β ≥ 0 that φtrue ∈ Range(Gβ) and the noise

is bounded ‖ε‖X ≤ ε0 < ∞. Then, there exists a constant C(J) < ∞ such that, for any

0 ≤ J ≤ β,

‖eJ‖X ≤ α−1(J + 1)ε0 + αJ+1C(J). (2.11)

Moreover, if α = α(ε0) = Cε
1/(J+2)
0 we have that ‖eJ‖X ≤ Cε

1−1/(J+2)
0 .

Theorem 2.1.12 shows that a judicious choice of α reduces the error in the approximation

ej = φtrue − φj to the noise level ε0 at each iterated Tikhonov-Lavrentiev update. However,

the error increases after a limit is reached which is determined by the smoothness of the

underlying solution J ≤ β.

For Tikhonov (-Lavrentiev) selection of the regularization parameter α large enough to

ensure stability but small enough to preserve accuracy in approximating φtrue is a central

problem. Several methods for selecting J and α a posteriori are known for iterated Tikhonov

(-Lavrentiev) including the L-curve method [40, 42], monotone error rule, using sensitivities

[62], and the discrepancy principle. Extrapolation methods based on varying α inside iterated

Tikhonov is explored in depth in the work of Hämarik, Palm and Raus [36] and Brezinski,

Redivo-zaglia, Rodriguez, and Seatzu [14]. See the work of Engl [21], Hämarik, Palm, and

Raus [37], Hämarik and Tautenhahn [38], Gfrerer [29], Leonov [62], Hanke and Groetsch [39],

among others.

Also, the sensitivity of the Tikhonov (-Lavrentiev) approximation s0(α) := dφ
dα

has been

studied in detail by Tikhonov and Arsenin [104] and Leonov [62]. In particular, Leonov

showed that a pseudo-optimal choice of regularization parameter for Tikhonov regularization

can be characterized using sensitivities via the smallest minimizer of α 7→ ‖αs0(α)‖X +

α−1/2ε0. Theorem 2.3.5 shows that this sensitivity and higher order sensitivities can be used

to increase the accuracy of Tikhonov-Lavrentiev approximation in an algorithmically simple
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way.

2.2 ERROR ESTIMATION OF LOW-REGULARITY SOLUTIONS

We show in this section that the approximation when φtrue ∈ Range(Gβ) contains hidden

accuracy for small β. Indeed, some components of the error can converge faster than the

global error.

2.2.1 Error estimates

We derive the error equation for the regularization approximations φj = Djy satisfying Eq.

(2.4) and Condition 2.1.10. Fix j between 0 and J ∈ N, and let G ≥ 0. Eliminating inter-

mediate steps in the definition of the iterated regularization approximations in Algorithm

2.1.11 gives

Dj = D0

j∑
i=0

(FD0)i, F = F (G,α) := D−1
0 −G. (2.12)

To derive the error equation for the general iterated regularization approximations, first

note that Gφtrue = φ̄ so that we can write

φtrue − φ0 = φtrue −D0(Gφtrue + ε) = −D0ε+D0Fφtrue,

and

φtrue − φj = φtrue −Dj(Gφtrue + ε)

= −D0ε− φj−1 −D0 (Gφtrue + ε−Gφj−1) = −D0ε+D0Fej−1.

We summarize via elimination of intermediate quantities without further proof:

Proposition 2.2.1. (Error equation for G ≥ 0 ) The j-th iterated deconvolution error

ej := φtrue − φj satisfies

ej = −D0

(
j∑

k=0

(FD0)k

)
ε+ (FD0)j+1 φtrue. (2.13)
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Suppose G is symmetric and non-negative. The general regularity assumption to prove

error estimates for regularization schemes is, for some β ≥ 0

φtrue ∈ Range(Gβ), (source condition). (2.14)

We show in this section that the source condition implies the additional Regularity Condition

(in Proposition 2.2.2) for iterated regularization operators using Condition 2.1.10. This

condition is necessary for the approximation theory of regularization methods.

Proposition 2.2.2. Suppose that the source condition φtrue ∈ Range(Gβ) is satisfied for

some β ≥ 0. Then, (φtrue, D0) satisfies

‖Dβ
0φtrue‖X ≤ C(β) <∞, (Regularity Condition). (2.15)

Proof. Recall that we assume ‖D0‖ ≤ α−1. Since G is compact, self-adjoint, and non-

negative definite, then the spectral theorem implies the existence of non-negative, real eigen-

values (λk(G))1≤k<∞ and corresponding complete, orthonormal set of eigenvectors (xk)1≤k<∞

satisfying Gxk = λk(G)xk for k = 1, 2, . . . ,∞. Denote φ̂(k) := (φtrue, xk)X so that φtrue =∑
k φ̂(k)xk and ‖φtrue‖2

X =
∑

k |φ̂(k)|2. Furthermore, since φtrue ∈ Range(Gβ) there exists

ψ ∈ X such that φtrue = Gβψ. Then,

∑
k

|λk(G)|−2β|φ̂(k)|2 = ‖ψ‖2
X <∞.

Note that we can identify λk(D0) = f(λk(G)) as a continuous function f : R → R of the

self-adjoint operator G. Thus, by direct calculation, we see that

‖Dβ
0‖2

X =
∑
k

|λk(D0)|−2β|φ̂(k)|2

=
∑
k

|λk(D0)|2β

|λk(G)|2β
(
|λk(G)|−2β|φ̂(k)|2

)
≤
(

sup
k
|λk(G)||λk(D0)|

)2β∑
k

|λk(G)|−2β|φ̂(k)|2 ≤ ‖ψ‖2
X <∞.

Here we applied Condition 2.1.10 so that |λk(G)||λk(D0)| ≤ 1 for all k.
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2.2.2 Superconvergence in interpolation spaces

Before stating and proving the main result, note that the assumption below that ‖GJ−βε‖X ≤

ε0 follows from ‖ε‖X ≤ ε0. However, when G is a smoothing operator, it is possible to get a

stronger bound since we often have that ‖GJ−βε‖X << ‖ε‖X .

Lemma 2.2.3 (Superconvergence of iterated regularization methods). Let G ≥ 0 and fix

α > 0. Let G and D0 : X → X satisfy Condition 2.1.10. Suppose that φtrue ∈ Range(Gβ)

for some 0 ≤ β < J and that the noise satisfies ‖GJ−βε‖X ≤ ε0 < ∞. Then there exists a

constant C(J) <∞ such that

‖GJ−β(φtrue − φJ)‖X ≤
(J + 1)ε0

α
+ C(J)αJ+1. (2.16)

Proof. Let F = D−1
0 −G. First, consider β = J so that φtrue ∈ Range(GJ). Fix j ≤ J . Then

starting with the error equation (2.13),

‖ej‖X =

∥∥∥∥∥−D0

(
j∑

k=0

(FD0)k
)
ε+ (FD0)j+1 φtrue

∥∥∥∥∥
X

≤ ‖D0‖L(X,X)

[
j∑

k=0

(
‖F‖L(X,X)‖D0‖L(X,X)

)k] ‖ε‖X
+ ‖F‖j+1

L(X,X)‖D
j+1
0 φtrue‖X .

From the regularity condition on φtrue proved in Proposition 2.2.2, we have that

‖Dj+1φtrue‖X ≤ C(j).

From Condition 2.1.10 we can then conclude

‖ej‖X ≤
(j + 1)ε0

α
+ C(j)αj+1. (2.17)

The general result for lower regularity φtrue ∈ Range(Gβ) for β < J follows from a change

of variables. Indeed, multiply Gφtrue = y by GJ−β to get

Gφ̃true = ỹ,
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where φ̃true = GJ−β, and ỹ = GJ−βy. Then, if φtrue ∈ Range(Gβ), it follows that φ̃true ∈

Range(GJ). Similarly, multiplying the equation for φj by GJ−β results in

φ̃j − φ̃j−1 = D0(ỹ −Gφ̃j−1),

where φ̃j = GJ−βφj for all j ≤ J . With noise ε̃ = GJ−βε, the error estimate for the tilde-

problem ẽJ = φ̃true − φ̃J takes the form of Equation (2.17)

‖ẽJ‖X ≤
(J + 1)ε0

α
+ C(J)αJ+1.

Therefore, since ẽJ = GJ−βeJ , the main result follows.

To put this superconvergence result in its appropriate framework, we further restrict our

problem.

Assumption 2.2.4. X is a separable Hilbert space and G : X → X compactly and is self

adjoint and positive.

Let (xk)1≤k<∞ ⊂ X be the complete, orthonormal basis for X of eigenvectors of G so

that Gxk = λkxj where

λ1 ≥ λ2 ≥ . . . λk ≥ λk+1 → 0, as k →∞.

Furthermore, for any u ∈ X, we can expand u and Gu by

u =
∑

1≤k<∞

ûkxk, Gu =
∑

1≤k<∞

λk(G)ûkxk, ûk = (u, xk)X .

We first develop an estimate via negative norms and then use this theory to provide an

optimal error estimate in ‖ · ‖X on large scales.

Definition 2.2.5. For any u ∈ Span {xk : k ≥ 1},

‖u‖2
X−s :=

∞∑
k=1

λsk|ûk|2. (2.18)

We note that in Eq. (2.18), convergence is not an issue since ûk is only finitely nonzero

because u ∈ Span {xk : k ≥ 1}.
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Definition 2.2.6. Suppose that Assumption 2.2.4 holds. Then

X−s = closure of X under ‖ · ‖X−s . (2.19)

Remark 2.2.7. The parameter s > 0 in Eqs. (2.18) and (2.19) is chosen to correspond to

the usual Sobolev spaces when G = (−δ2∆ + I)−1 under periodic boundary conditions. We

observe that u ∈ X−s with decreasing s corresponds to increasing smoothness since

u ∈ X−s ⇔ Gs/2u ∈ X ⇔ u ∈ Range(G−s/2).

Theorem 2.2.8 (Error estimate in interpolation spaces). Under the assumptions of Lemma

2.2.3 and Assumption 2.2.4

‖φtrue − φJ‖X−(J−β) ≤
(J + 1)ε0

α
+ C(J)αJ+1. (2.20)

Proof. We apply Lemma 2.2.3 to ‖φtrue − φJ‖X−(J−β) to obtain the result.

Thus, even when the global error in X is not optimal as in the sense of Theorem 2.2.3,

the error in a negative norm X−s (s > 0) in the scale of Hilbert spaces is much smaller than

in X = X0. Theorem 2.2.8 connects superconvergence on large scales to the work of [90] on

functionals.

Corollary 2.2.9. If φ 7→ (φ, l)X defines a bounded, linear functional, e.g. l ∈ XJ−β, then

|(l, φtrue)X − (l, φJ)X | ≤ ‖l‖XJ−β
{
J + 1

α
ε0 + αJ+1C(J)

}
.
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2.2.3 Superconvergence - large scale error estimation

We connect the above abstract result to the application of deconvolution of turbulent veloc-

ities. Fix a cutoff N0 > 0 and define a subspace associated with the large scales:

XN0 := Span {xk : ∀k < N0} , (truncated function space). (2.21)

Then we can define the projection operator P : X → XN0 onto the large scales by

Pu :=
∑

1≤k<N0

ûkxk. (2.22)

Corollary 2.2.10. Under the assumptions of Lemma 2.2.3 and Assumptions 2.2.4,

‖P (φtrue − φJ)‖X ≤ C(N0)
(J + 1)ε0

α
+ C(J)αJ+1, (2.23)

where C(N0) = λ
−(J−β)/2
N0

> 0.

Proof. Note that

‖Pu‖2
X ≤ λJ−βN0

N0∑
k=1

λ
−(J−β)
k |ûk|2 ≤ λJ−βN0

∞∑
k=1

λ
−(J−β)
k |ûk|2 = λJ−βN0

‖u‖2
X−(J−β)

.

Now apply the result of Theorem 2.2.8.

An even more refined result is presented in Section 2.3.2 where, in large scales, the

estimate on the noisy contribution, does not grow with J , and additionally, we retain op-

timal convergence in the noise-free part of the estimate O(αJ+1). Motivated by turbulence

phenomenology [54] (see Condition 2.3.9), we consider the following spectral property of

solutions u.

Theorem 2.2.11. Suppose that G and D0 satisfy Condition 2.1.10 and that the true solution

u satisfies for any k ≥ 0

|ûk|2 = (u, xk)
2
X ≤ Ckm,

for some fixed m and C > 0. Then the error in the large (resolved) scales satisfies

‖P (u−DJ ūε)‖X ≤ C0(N0)‖Pε‖X + αJ+1C1(N0, J),

for some constant C0 > 0 independent of J and α, and C1 > 0.
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Proof. Let ‖ · ‖ = ‖ · ‖X . We first notice that

‖P (u−DJ(ū+ ε))‖ ≤ ‖P (u−DJ ū)‖+ ‖PDJε‖ .

We first consider the noisy part of the estimate

‖PDJε‖2 =
∑

1≤k<N0

(λk(DJ))2|ε̂k|2

≤ sup
1≤k<N0

(λk(DJ))2
∑

1≤k<N0

|ε̂k|2

= sup
1≤k<N0

(λk(DJ))2 ‖Pε‖2.

Therefore,

‖PDJε‖ ≤ sup
1≤k<N0

(λk(DJ)) ‖Pε‖.

Furthermore, by summing the geometric series for DJ = D0

∑J
j=0(FD0)j, recalling that

F = D−1
0 −G, we obtain

λk(DJ) = λk(D0)
1− (λk(D0)λk(F ))J+1

1− (λk(D0)λk(F ))

= λk(G)−1
[
1− (λk(D0)λk(F ))J+1

]
.

Since

λk(D0)λk(F ) = λk(D0)λk(D
−1
0 −G)

= λk(D0)
(
λk(D

−1
0 )− λk(G)

)
= 1− λk(D0)λk(G),

and |λk(D0)||λk(G)| ≤ 1 from Condition 2.1.10, it follows that |λk(DJ)| ≤ |λk(G)|−1. There-

fore,

‖PDJε‖ ≤ sup
1≤k<N0

λk(G)−1‖Pε‖.

Now for the non-noisy part of the estimate. Let QJ = 1− λk(DJ)λk(G). From above we

conclude that

QJ = (λk(D0)λk(F ))J+1 ≤ sup
1≤k<N0

(λk(D0)α)J+1
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Now we enforce the velocity condition |ûk|2 ≤ Ckm to obtain

‖P (u−DJ ū)‖2 =
∑

1≤k<N0

|1− λk(DJ)λk(G)|2|ûk|2

≤ C sup
1≤k<N0

[
|1− λk(DJ)λk(G)|2

] ∑
1≤k<N0

km

≤ C sup
1≤k<N0

λk(D0)2J+2α2J+2
∑

1≤k<N0

km

≤ C(N0) sup
1≤k<N0

λk(D0)2J+2α2J+2

≤ C(N0) sup
1≤k<N0

λk(G)−2J−2α2J+2.

The last inequality follows from Condition 2.1.10. Combining the results, we prove the claim.

The constant in the deconvolution error term in Theorem 2.2.11 can be improved in the

case that m < −1, as is the case in Condition 2.3.9. If m < −1 then the dependence of C

on N0 can be removed. We use the integral comparison test to obtain

‖P (u−DJ ū)‖2 ≤ C sup
1≤k<N0

λk(D0)2J+2α2J+2
∑

1≤k<N0

km

≤ C sup
1≤k<N0

λk(D0)2J+2α2J+2(1 +

∫ ∞
1

zmdz)

≤ C sup
1≤k<N0

λk(D0)2J+2α2J+2

The last inequality follows since m < −1.

2.3 APPLICATIONS

First, we consider the sensitivity of iterated Tikhonov-Lavrentiev regularization approxima-

tion to regularization parameter selection α. Then, we verify the predicted (worst case) error

bounds for the application of turbulent velocities.
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2.3.1 Sensitivity analysis of Tikhonov-Lavrentiev regularization

It is important to be able to quantify the accuracy of the regularization scheme used. Sensi-

tivities give information about the reliability of predictions, e.g. [2,12,34,64,95]. Sensitivities

are also required when the output of an algorithm is optimized over the algorithm’s inputs,

e.g. [34].

Definition 2.3.1. The sensitivity with respect to α of the j-th regularized approximation

φj = φj(α) is denoted

sj = sj(α) :=
d

dα
φj(α). (2.24)

Higher order steps of iterated Tikhonov-Lavrentiev approximations φj implicitly compute

higher order the sensitivities of φj. The following alternate algorithm for iterated Tikhonov-

Lavrentiev regularization is presented in terms of the sensitivities. The calculation of sen-

sitivities requires solving for the updates, so this form of the iterated Tikhonov-Lavrentiev

algorithm is enticing from a numerical efficiency and programmatic infrastructure point of

view.

Algorithm 2.3.2 (Iterated Tikhonov-Lavrentiev via sensitivities). Select α > 0 and fix

J ∈ N.

1. Solve for φ0, s0, φ1 satisfying

(G+ αI)φ0 = y, (G+ αI)s0 = −φ0, φ1 = φ0 − αs0. (2.25)

2. For j = 1, . . . , J , solve for φj satisfying

(G+ αI)(sj − sj−1) = −(φj − φj−1)−Gsj−1.

If j < J , then compute update

φj+1 = φj − αsj + α2D0sj−1.
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Since φ0 is a function of α, its Taylor polynomial expansion at α as a function of α̃ is

Tj(φ0(α))(α̃) := φ0(α) + (α̃− α)
d

dα
φ0(α) + . . .+

(α̃− α)j

j!

dj

dαj
φ0(α).

Then the Maclaurin polynomial Mj is

Mj(φtrue) := Tj(φ0(α))(α̃)|α̃=0 = φ0(α)− α d

dα
φ0(α) + . . .+ αj

(−1)j

j!

dj

dαj
φ0(α).

Next we show that Mj(φtrue) is exactly the j-th iterated Tikhonov-Lavrentiev approximation

φj. Thus, updates implicitly compute higher order sensitivities of φ0(α) and use them to

correct the approximation.

Lemma 2.3.3. For G ≥ 0, α > 0, 1 ≤ j ≤ J , the Tikhonov-Lavrentiev approximations

satisfy

φj+1(α)− φj(α) = −αsj(α) + α2D0sj−1(α), (2.26)

φj(α)− φj−1(α) = αj−1Dj−1
0 (φ1 − φ0), (2.27)

dj−1s0(α)

dαj−1
= (−1)j−1 k!

2α
Dk−2

0 s1(α). (2.28)

Proof. The iterated Tikhonov-Lavrentiev approximation updates are given by

(G+ αI)(φj − φj−1) = y −Gφj−1.

Hence,

−αφj−2 = y − (G+ αI)φj−1 and, (2.29)

−αφj−1 = y − (G+ αI)φj. (2.30)

On the other hand, implicit differentiation of the update equation with respect to α produces

(G+ αI)sj−1 = −(φj−1 − φj−2) + αsj−2. (2.31)
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Subtracting (2.29) and (2.30) and substituting into (2.31) proves the first identity, (2.26).

The next identity follows by subtracting (2.29) and (2.30) again and rearranging to get

(G+ αI)(φj − φj−1) = α(φj−1 − φj−2).

Backward induction proves (2.27). In (2.36) we show that φ1(α)−φ0(α) = −αs0(α). Implicit

differentiation of (2.36) shows

ds0(α)

dα
= −α−1s1(α). (2.32)

On the other hand, starting with (G+αI)φ0(α) = y and differentiating j times with respect

to α, we get
dj−1s0(α)

dαj−1
= −jD0

dj−2s0(α)

dαj−2
.

Using backward induction with the relation (2.32), we prove (2.28).

Lemma 2.3.4. For G ≥ 0, α > 0, the sensitivity s1(α) and Tikhonov-Lavrentiev approxi-

mations φ0 and φ1 satisfy

(G+ αI)s1(α) = −2(φ1(α)− φ0(α)). (2.33)

Proof. The claim is proved by applying s0(α) = −φ1(α)−φ0(α)
α

from (2.25) to (2.31).

Theorem 2.3.5 (Higher order sensitivities correct for accuracy). Suppose G ≥ 0 and fix

α > 0. Then, in the absence of noise and when φtrue ∈ Range(GJ)

φtrue = Mk(φtrue) +O(αk+1). (2.34)

In the general case of noisy data, the k-th Tikhonov-Lavrentiev approximation satisfies

φk = Mk(φtrue). (2.35)
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Proof. First note that φ0(α) = (G + αI)−1y is a smooth function of α > 0. Therefore,

if y = φ̄ (no-noise), then φtrue = φ0(α = 0) (properly defined as a limit when the source

condition is satisfied as shown by considering the error equation and estimate), and so by

Taylor’s Theorem we prove the first claim. Next, by Lemma 2.3.3, (2.26),

φk(α) = φk−1 − αsk−1(α) + α2D0sk−2(α).

We proceed by induction to show that φk = Mk(φtrue). The base case k = 1 is concluded by

implicitly differentiating (2.9) to obtain

s0 = −(G+ αI)−1φ0,

and then rearranging terms in (2.10) and using the above formula gives

φ1 − φ0 = (G+ αI)−1((G+ αI)φ0 −Gφ0)

= (G+ αI)−1(αφ0)

= −αs0. (2.36)

For the inductive step, assume that φk−1 = Mk−1(φtrue). We must show that

αk
(−1)k

k!

dkφ0(α)

dαk
= αsk−1(α) + α2D0sk−2(α). (2.37)

Using Lemma 2.3.3, equations (2.26) and (2.28) imply that (2.37) is equivalent to showing

φk(α)− φk−1(α) = −α
k−1

2
Dk−2

0 s1(α). (2.38)

Multiplying (2.38) by −2α−k+1(G+ αI)k−1, we get

(G+ αI)s1(α) = − 2

αk−1
(G+ αI)k−1(φk(α)− φk−1(α)). (2.39)

From (2.27) and (2.28), it follows that (2.39) is equivalent to

(G+ αI)s1(α) = −2(φ1(α)− φ0(α)). (2.40)

Since we prove the identity (2.40) in Lemma 2.3.4, we are done.
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2.3.2 Deconvolution of turbulent velocities

We now show a specific example of turbulent velocities satisfying the theory of Section 2.2.3.

To develop this result we must first summarize some features of the time-averaged energy

spectrum of homogeneous, isotropic turbulence and the decomposition of energy into wave

numbers via Fourier series, see [58]. Consider notation as introduced in Section 2.1.1.

Definition 2.3.6 (Long time average). Let 〈·〉 denote long time averaging, given by

〈ψ〉 := lim sup
T→∞

1

T

∫ T

0

ψ(t)dt.

Definition 2.3.7 (Kinetic energy). The kinetic energy distribution functions are defined by

Ê(k, t) =
1

2

∑
k−1<|k|≤k

|u(x, t)|2dx, and

Ê(k) =
〈
Ê(k, t)

〉
.

Remark 2.3.8. Parseval’s equality implies that the time averaged kinetic energy of the given

velocity u(x, t) can be written as

Ê(k) =

〈
1

2

∑
k−1<|k|≤k

|û(k,t)|2
〉
.

Let ν > 0 represent fluid viscosity and εedr the time averaged energy dissipation rate

given by

εedr =

〈∫
ν|∇u(x, t)|2dx

〉
.

If U represents a global velocity scale of the flow’s large structures, the K41 theory of

turbulence [3, 33, 54] (a phenomenological theory with good agreement in the large with

experimental data [82, 83]) states that there is a range of wave numbers, known as the

inertial range, satisfying 0 < Uν−1 ≤ k ≤ ε
1/4
edrν

−3/4 < ∞ over which Ê(k) ' 1.6ε
2/3
edrk

−5/3.

Consistent with the K41 theory, we make the following assumption.

Condition 2.3.9 (K41 Compatible Velocity). Over all 0 < k <∞,

Ê(k) ≤ 1.6ε
2/3
edrk

−5/3.
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Recall from Section 2.1.1 the discussion of projections into large scales.

Definition 2.3.10 (Large scale projection). Fix the filter radius δ > 0, cutoff frequency 1/δ,

and large scale solution space Xlarge. Let P : L2(Ω)→ Xlarge be the L2 orthogonal projection

into Xlarge. Then

P

(∑
k∈Z3

û(k,t)eik·x

)
=
∑
|k|≤1/δ

û(k,t)eik·x.

For a specific example, we consider the Pao filter [73,84].

Definition 2.3.11 (Pao filter). The Pao filter G acting on u ∈ L2([0, π]3) is defined by

Gu(x) =
∑
k

1

1 + δ2|k|2
û(k)eik·x.

We write the transfer function of G as

Ĝ(k) =
1

1 + δ2|k|2
.

This is the transfer function for the differential filter G = (−δ24 + 1)−1. Even though

the turbulent velocity is not smooth, Theorem 2.2.11 implies that the rate of convergence

coincides with the smooth case.

Theorem 2.3.12. Suppose that a velocity u is K41 compatible. The time averaged decon-

volution error for iterated Tikhonov-Lavrentiev deconvolution applied to the Pao filter in the

large (resolved) scales, as defined in Definition 2.3.10, satisfies

〈
||P (u−DJ ūε)||2L2(Ω)

〉1/2

≤ 2
√

2||Pε||L2(Ω) + αJ+1ε
1/3
edrC(J).

The method of proof is similar to that applied in Theorem 2.2.11. The key difference

is that Theorem 2.3.12 is studying Fourier expansions in a particular case as opposed to

spectral decomposition for a general filter and deconvolution. Recall that for the Pao filter,

Ĝ(k) = (δ2|k|2 + 1)−1 and D̂0(k) = ((δ2|k|2 + 1)−1 + α)−1 (Tikhonov-Lavrentiev).
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Proof. Denote ‖ · ‖ = ‖ · ‖L2(Ω). Expanding the error term gives

‖P (u−DJ(Gu+ ε))‖2 = ‖P (u−DJGu) + P (DJε))‖2

≤ 2‖P (u−DJGu)‖2 + 2‖PDJε‖2

≤ 2
∑
|k|≤1/δ

|1− D̂J(k)Ĝ(k)|2|û(k,t)|2 + 2
∑
|k|≤1/δ

|D̂J(k)|2|ε̂(k,t)|2.

Recall from (2.12) that

DJ = D0

J∑
j=0

[(D−1
0 −G)D0]j = D0

J∑
j=0

(I −GD0)j.

Calculating the transfer function, we obtain

D̂J(k) =
1

(δ2|k|2 + 1)−1 + α

J∑
j=0

[
1− (δ2|k|2 + 1)−1

(δ2|k|2 + 1)−1 + α

]j

=
δ2|k|2 + 1

1 + α(δ2|k|2 + 1)

J∑
j=0

[
α(δ2|k|2 + 1)

1 + α(δ2|k|2 + 1)

]j

=
δ2|k|2 + 1

1 + α(δ2|k|2 + 1)

1−
[

α(δ2|k|2+1)
1+α(δ2|k|2+1)

]J+1

1− α(δ2|k|2+1)
1+α(δ2|k|2+1)

= (δ2|k|2 + 1)

(
1−

[
α(δ2|k|2 + 1)

1 + α(δ2|k|2 + 1)

]J+1
)

≤ 2.

The last inequality follows from |k| ≤ 1/δ. This inequality implies the bound on the noisy

term.

‖P (DJε))‖2 =
∑
|k|≤1/δ

|D̂J(k)|2|ε̂(k,t)|2

≤ sup
|k|≤1/δ

|D̂J(k)|2
∑
|k|≤1/δ

|ε̂(k,t)|2

≤ 4‖Pε‖2.

Recalling that F = D−1
0 −G, we calculate

F̂ (k) = D̂0(k)−1 − Ĝ(k) =

(
1

δ2|k|2 + 1
+ α

)
− 1

δ2|k|2 + 1
= α.
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This implies that

‖P (u−DJGu)‖2 =
∑
|k|≤1/δ

|1− D̂J(k)Ĝ(k)|2|û(k,t)|2

=
∑
|k|≤1/δ

∣∣∣1− (1− (D̂0(k)F̂ (k))J+1
)∣∣∣2 |û(k,t)|2

=
∑
|k|≤1/δ

(
1

(δ2|k|2 + 1)−1 + α)
α))2J+2|û(k,t)|2

≤ 22J+2α2J+2
∑
|k|≤1/δ

|û(k,t)|2.

Imposing the K41 compatibility condition, we obtain (via integral comparison)

〈
||P (u−DJGu)||2

〉
≤ 22J+3α2J+2

〈
1

2

∑
|k|≤1/δ

|û(k,t)|2
〉

≤ 22J+3α2J+2
∑
k≤1/δ

1.6ε
2/3
edrk

−5/3

≤ 22J+3α2J+21.6ε
2/3
edr

(
1 +

∫ ∞
1

k−5/3

)
≤ C(J)α2J+2ε

2/3
edr .

The claim is proved by combining the results and taking the square root.

The main difference between Theorem 2.3.12 and the error bound on Tikhonov-Lavrentiev

regularization, Theorem 2.1.12 is that the noise in the small scales is not amplified. The

bound on ‖P (DJε))‖ depends directly on sup
|k|≤1/δ

|D̂J(k)|2, which is bounded. However,

sup
|k|∈R
|D̂J(k)|2 which is needed for the estimate in Theorem 2.1.12 is unbounded as α→ 0.
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2.4 NUMERICAL EXPERIMENTS

2.4.1 Superconvergence of turbulent velocities

Theorem 2.3.12 implies that the noise is not amplified by 1
α

in the projection of the error,

as is the case for Tikhonov-Lavrentiev regularization. We verify this error bound with a

calculation. We construct a synthetic velocity field uM,N : (0, 2π)2 → R2 representative of

the time-averaged turbulent velocities discussed in Section 2.3.2. For m = 1, 2, . . . ,M <∞

and n = 1, 2, . . . , N <∞ and basis functions Am,n, define

uM,N(x, y) =
N∑
n=1

M∑
m=1

(m2 + n2)−7/6Am,n(x, y). (2.41)

Desiring uM,N to be 2π-periodic with ∇ · uM,N = 0, we chose

Am,n(x, y) := (n sin(mx) cos(ny),−m cos(mx) sin(ny)) .

Thus, (2.41) provides a decomposition of uM,N in terms of its Fourier spectrum. Let

Q(k) :=
{

(m,n) ∈ [1,M ]× [1, N ] : (k − 1)2 < m2 + n2 ≤ k2, m ≤M,n ≤ N
}
.

Then with M = N and writing uN,N := uN , we calculate

‖uN‖2 =
N∑
k=1

π2E(k), E(k) :=
∑

(m,n)∈Q(k)

(m2 + n2)−7/3(m2 + n2).

Since each sum over (m,n) ∈ Q(k) contains of order O(k) terms, we conclude that the

constructed uN satisfies

E(k) ≤ O(k−5/3).

We are interested in analyzing the effect of iterated Tikhonov regularization on the

large-scale approximations uM,N(x, y). Let G = (−δ2∆ + I)−1 and write Gφ = φ̄. Since

∆Am,n = −(m2 + n2)Am,n, we calculate

Am,n =
1

1 + δ2(m2 + n2)
Am,n
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Lemma 2.4.1. The transfer function for G on functions from Span(Am,n) is

Ĝ(m,n) = (1 + δ2(m2 + n2))−1.

Moreover, letting D0 = (G+ αI)−1, then

D̂J =
1

Ĝ

(
1− αJ+1D̂J+1

0

)
.

Proof. Note that ∆Am,n = −(m2 + n2)Am,n and calculate

GAm,n =
1

1 + δ2(m2 + n2)
Am,n,

to obtain Ĝ(m,n).

Equation (2.12) implies that

D̂J(m,n) = D̂0(m,n)
J∑
k=0

(F̂ (m,n)D̂0(m,n))k,

where F̂ (m,n) = α. This implies that

D̂J(m,n) = D̂0(m,n)
1− (αD̂0(m,n))J+1

1− αD̂0(m,n)

=
1− (αD̂0(m,n))J+1

D̂0(m,n)−1 − α

=
1

Ĝ(m,n)
(1− (αD̂0(m,n))J+1),

as claimed.

Lemma 2.4.2. The noise-free error in the large scales, eN,J = uN −DJ(ūN), is

E2
0 := ‖eN,J‖2 = π2α2J+2

N∑
m,n=1

[1 + δ2(m2 + n2)]
2J+2

(m2 + n2)−8/6

[1 + α(1 + δ2(m2 + n2))]2J+2
.
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Proof.

‖eN,J‖2 = (eN,J , eN,J) = ((I −DJG)uN , (I −DJG)uN) (2.42)

= (
N∑

m,n=1

(1− D̂J(m,n)Ĝ(m,n))(m2 + n2)−7/6Am,n, (2.43)

N∑
m,n=1

(1− D̂J(m,n)Ĝ(m,n))(m2 + n2)−7/6Am,n).

We note that

(Am,n, Ai,j) =

 π2(m2 + n2), m = i > 0 and n = j > 0

0 otherwise
,

because of the orthogonality of sin(nix) for integer values ni 6= nj, and apply this and Lemma

2.4.1 to (2.42) to obtain the result.

Proposition 2.4.3. The error to the noisy problem in the large scales, eεN,J = uN−DJ(ūN +

ε), is

E2
ε := ‖eεN,J‖2 = ‖eN,J‖2 +

J∑
j,k=0

αj+k
(
Dj+1

0 ε,Dk+1
0 ε

)
− 2

J∑
k=0

N∑
m,n=1

αk+J+1 [1 + δ2(m2 + n2)]
J+1

(m2 + n2)−7/6

[1 + α(1 + δ2(m2 + n2))]J+1

(
Dk+1

0 ε, Am,n
)
.

Proof. Expand the expression for E2
ε and use the symmetric property of the inner product

to obtain

E2
ε = ((I −DJG)uN −DJε, (I −DJG)uN −DJε)

= E2
0 − 2 ((I −DJG)uN , DJε) + (DJε,DJε) .

Equation (2.12) gives

(DJε,DJε) =

(
J∑
j=1

αjDj+1
0 ε,

J∑
k=1

αkDk+1
0 ε

)
.
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Applying (2.12) and Lemma 2.4.1, the mixed terms expand to

((I −DJG)uN , DJε)

=

(
N∑

m,n=1

(1− D̂J(m,n)Ĝ(m,n))(m2 + n2)−7/6Am,n,

J∑
k=1

αkDk+1
0 ε

)

=
N∑

m,n=1

J∑
k=1

αJ+1+k

(
[1 + δ2(m2 + n2)]

J+1
(m2 + n2)−7/6

[1 + α(1 + δ2(m2 + n2))]J+1
Am,n, D

k+1
0 ε

)
.

Combining these together yields the result.

In each of Figures 1, 2, 3 and 4, we plot Eε using Matlab for the projections into the

spaces where n ≤ N and m ≤ N for N = 4, 8, 16, and 32. The true solution was filtered

using a filter radius δ = 0.25 and then noise of 10−5A8,8 was added. The error was calculated

between the true solution and the deconvolution of the noisy and filtered data. Figures 1,

2, 3 and 4 show for J = 0, 1, 2, and 3 respectively the slope of J + 1 in the error when the

noise is not in the projection space as Theorem 2.3.12 predicts. When the noise is in the

projection space, we see the predicted error slope until the error reaches the level of the noise

and then we see no further improvement.

2.4.2 Sensitivity calculation

The sensitivity calculations are demonstrated by applying iterated Tikhonov regularization

to the Fredholm integral equation of the first kind discussed by Shaw [89] and given by

∫ π/2

−π/2
κ(s, t)x(s)ds = b(t), −π/2 ≤ t ≤ π/2, (2.44)

where

κ(s, t) = (cos(s) + cos(t))(
sin(u(s, t))

u(s, t)
)2,

u(s, t) = π(sin(s) + sin(t)), and

b(t) = 2e−6(t−0.8)2 + e−2(t+0.5)2 .
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Figure 1: Norm of the projection of the error as a function of α for the J = 0 regularization

method. Observe that when the noise=10−5A8,8 is in the projection space (when N=16 and

32), the error is bounded by the size of the noise. However, when the noise is not in the

projection space (when N=4 and 8), we observe the predicted O(α1) error.

The discretization of the operator A was calculated with 200 equally spaced quadrature

points in t using the Matlab regularization toolbox by Hansen [41]. We approximate the

continuous solution x(t) of the continuous Shaw problem (2.44) by solving

Ax = b,

where bk = b(tk).
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Figure 2: Norm of the projection of the error as a function of α for the J = 1 regularization

method. Observe that when the noise=10−5A8,8 is in the projection space (when N=16 and

32), the error is bounded by the size of the noise. However, when the noise is not in the

projection space (when N=4 and 8), we observe the predicted O(α2) error.

This is known to be an extremely ill-conditioned system with condition number 5.5×1019.

We add noise to the right-hand side bk using uniformly distributed noise ε ∈ R200, where

‖ε‖ = 10−3‖b‖.

We use the L-curve method (via the regulation toolbox) [23, 40–42] to obtain regular-

ization parameter α = 0.00180. We use this value of α to show the benefit of applying

iterated Tikhonov regularization to an initially α-optimized procedure. Moreover, since this
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Figure 3: Norm of the projection of the error as a function of α for the J = 2 regularization

method. Observe that when the noise=10−5A8,8 is in the projection space (when N=16 and

32), the error is bounded by the size of the noise. However, when the noise is not in the

projection space (when N=4 and 8), we observe the predicted O(α3) error.

is a synthetic test with a known noise, we can use the noise-free energy functional,

E(v) =
1

2
(Av, v)− (b, v),

to determine when our noisy solution is no longer converging to the true solution. For this

example, 31 iterates were taken before E(xj) > E(xj−1).
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Figure 4: Norm of the projection of the error as a function of α for the J = 3 regularization

method. Observe that when the noise=10−5A8,8 is in the projection space (when N=16 and

32), the error is bounded by the size of the noise. However, when the noise is not in the

projection space (when N=4 and 8), we observe the predicted O(α4) error.

The results of our experiment are summarized in Figure 5 and Table 1. Figure 5 shows

the clear improvement of the solution x31 compared to x0. Also, the band of sensitivity

values decreases from the Tikhonov approximation to the iterated-Tikhonov approximation,

supporting our theory in Section 2.3.1 that suggests updating with iterated Tikhonov acts

to further stabilize the regularization scheme. Table 1 shows the more accurate solutions

correspond to a smaller sensitivity. We note that the errors do not approach zero due to the
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noise added to the problem.

2.5 CONCLUSIONS

Iterated regularization provides a much higher attainable accuracy that is uniform in the

problem parameters on the largest scale of the deconvolved approximation in Theorem 2.3.12,

and a much smaller error in the deconvolved approximation in interpolation spaces in The-

orem 2.2.8, and loss of uniformity in the deconvolved approximations accuracy on the small

scales and a bound on the attainable global accuracy consistent with the less regularity of

the turbulent velocity data in Theorem 2.2.11.
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Figure 5: Sensitivity comparison between the Tikhonov and iterated Tikhonov solutions for

an optimally chosen regularization parameter. Notice the band of sensitivity values decreases

for the more accurate solution.
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Table 1: Convergence statistics for the Shaw problem. Note the decrease in error and

sensitivities as the number of iteration steps increases.

J ‖xJ−xtrue‖
‖xtrue‖

‖G1/2(xJ−xtrue)‖
‖xtrue‖ E(xj−1)− E(xj) ‖sJ‖

0 0.1108 0.003494 8.288e-4 1.380

1 0.08401 0.001972 1.990e-4 1.590

6 0.05226 0.0006155 6.929e-6 0.8773

11 0.04922 0.0004500 9.725e-7 0.3405

16 0.04868 0.0004173 2.016e-7 0.1338

21 0.04853 0.0004100 4.457e-8 0.09605

26 0.04847 0.0004084 8.444e-9 0.1053

31 0.04843 0.0004082 -8.934e-11 0.1185
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3.0 MODIFIED ITERATED TIKHONOV-LAVRENTIEV

“A very small cause which escapes our notice determines a considerable effect that we cannot

fail to see, and then we say that the effect is due to chance.” (Henri Poincaré)

3.1 INTRODUCTION

Problem 3.1.1 (Noise Free Model Problem). Let X and Y be Hilbert spaces. Given a linear

filter operator G : X → Y and a filtered signal ū ∈ Range(G). The noise free model problem

is to find u ∈ X which satisfies

Gu = ū. (3.1)

Problem 3.1.2 (Noisy Model Problem). Let X and Y be Hilbert spaces. Given a linear

filter operator G : X → Y and a filtered signal ū ∈ Range(G) and noise ε ∈ Y . The noisy

model problem is to find u ∈ X satisfying

Gu = ū+ ε. (3.2)

If the filter G is a convolution operator, then the deconvolution problem is to solve ei-

ther Problem 3.1.1 or Problem 3.1.2. The deconvolution problem is an important inverse

problem [26, 56, 66, 67, 98]. This problem occurs in many applications including parameter

identification [22, 23], the deconvolution problem of image processing [11], and the closure

problem in turbulence modeling [10, 28, 59, 67]. The deconvolution problem gets more com-

plicated when noise is added to the signal.

42



It is known that if G is compact and Range(G) is infinite dimensional, then Problems

3.1.1 and 3.1.2 are ill-posed [1, 4, 41, 70, 86, 106, 109]. Tikhonov-Lavrentiev regularization, a

regularization method described further in Algorithm 3.2.8 that introduces a regularization

parameter α, is one method that can be used to solve Problem 3.1.2. Tikhonov-Lavrentiev

is a robust method that does not exploit the properties of the filter (with filtering radius

δ). Theorem 3.3.8 shows that a small modification to the Tikhonov-Lavrentiev algorithm

that exploits the properties of this filter and improves the error bounds from O(αJ+1) to

O((αδ2)J+1) in the noise free model problem. That is, a small algorithmic modification leads

to a large improvement in the error bounds.

3.2 PRELIMINARIES AND NOTATION

Throughout this chapter, we use the standard notation for Lebesgue and Sobolev spaces and

their norms. Also, Ω will be a regular, bounded, polyhedral domain in Rn. We define the

following space

X = H1
0 (Ω)d =

{
v ∈ L2(Ω)d : ∇v ∈ L2(Ω)dxd and v = 0 on ∂Ω

}
. (3.3)

The norm ‖ · ‖ will denote the L2(Ω) norm unless otherwise specified in a proof. Similarly

the inner product (·, ·) will denote the L2(Ω) inner product.

We will use the notation Xh ⊂ X to denote a finite dimensional subset of X. An

example of Xh is the set of continuous polynomials of degree k. We also assume that we

have homogenous boundary data throughout.

We use the following approximation inequalities, see [13],

inf
v∈Xh

‖u− v‖L2(Ω) ≤ Chk+1‖u‖Hk+1(Ω), u ∈ Hk+1(Ω)n,

inf
v∈Xh

‖u− v‖H1(Ω) ≤ Chk‖u‖Hk(Ω), u ∈ Hk+1(Ω)n. (3.4)

Other well known inequalities used herein include:

• Cauchy-Schwartz inequality: |(f, g)| ≤ ‖f‖‖g‖, ∀f, g ∈ L2(Ω).
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• Young’s inequality: ab ≤ ε
p
ap + ε−q/p

q
bq, where 1 < p, q < ∞, 1

p
+ 1

q
= 1, ε > 0, and

a, b ≥ 0.

• Poincare-Friedrich’s inequality: ‖v‖ ≤ CPF‖∇v‖, ∀v ∈ X.

• Triangle inequality: ‖a+ b‖ ≤ ‖a‖+ ‖b‖.

3.2.1 The differential filter

The differential filter (also called the Helmholz filter) is used in multiple large eddy simulation

models [10,26,28,59,66,67]. This filter is equivalent to the Pao filter used in image processing

[59].

Definition 3.2.1 (Differential filter). The differential filter G is defined as Gu = ū where u

and ū satisfy

−δ2∆ū+ ū = u in Ω. (3.5)

Remark 3.2.2 (Variational differential filter). The differential filter is equivalent (see [66,

67]) to the following variational formulation. Find u ∈ H1
0 (Ω) satisfying

δ2(∇u,∇v) + (u, v) = (utrue, v), ∀v ∈ X. (3.6)

Definition 3.2.3 (Discrete differential filter). Let Xh be a finite dimensional subspace of

X. We define Gh : L2(Ω)d → Xh where uh = Ghu which is the unique solution in Xh to

δ2
(
∇uh,∇vh

)
+
(
uh, vh

)
=
(
u, vh

)
, ∀vh ∈ Xh. (3.7)

Lemmas 3.2.4, 3.2.5, 3.2.6 and 3.2.7 are quoted from [66] for completeness.

Lemma 3.2.4. If u ∈ L2(Ω)d, the following stability estimate for problem (3.6) holds:

δ2‖∇u‖2 +
1

2
‖u‖2 ≤ 1

2
‖u‖2. (3.8)

Lemma 3.2.5. The operator G : L2(Ω)d → X is self-adjoint.
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Lemma 3.2.6. If ∇u ∈ L2(Ω)d and u satisfies (3.6), then

δ2

2
‖∇(u− u)‖2 + ‖u− u‖2 ≤ δ2

2
‖∇u‖2. (3.9)

If, additionally ∆u ∈ L2(Ω)d, then

δ2‖∇(u− u)‖2 +
1

2
‖u− u‖2 ≤ δ4‖∆u‖2. (3.10)

Lemma 3.2.7. The operator Gh : L2(Ω)d → Xh is self-adjoint and positive semi-definite on

L2(Ω) and positive definite on Xh.

3.2.2 Tikhonov regularization

A workhorse to solve inverse problems is Tikhonov regularization [23,103,104]. If the operator

G is symmetric and positive definite, then instead of passing to the normal equations as is

the case in Tikhonov regularization, Tikhonov-Lavrentiev regularization can be applied.

Definition 3.2.8 (Tikhonov-Lavrentiev regularization). Choose a regularization parameter

α > 0. Solve for u0 satisfying

(G+ αI)u0 = u, in Ω.

This idea can be extended by an iteration method.

Definition 3.2.9 (Iterated Tikhonov-Lavrentiev regularization). Choose a regularization

parameter α > 0 and fix the number of updates J ≥ 1. The iterated Tikhonov-Lavrentiev

approximations uj (0 ≤ j ≤ J) are found by solving

(G+ αI)u0 = u, in Ω,

(G+ αI)(uj − uj−1) = u−Guj−1, in Ω.

Given a source condition, it is known [23,51] Tikhonov-Lavrentiev and iterated Tikhonov-

Lavrentiev regularization converge to utrue as ε→ 0 and α→ 0.
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Theorem 3.2.10 (Error bound of Tikhonov-Lavrentiev regularization). Suppose that G is

non-negative definite. Fix α > 0. Let ej = utrue − uj for all j = 0, . . . , J . Suppose, for some

β ≥ 0 that utrue ∈ Range(Gβ) and the noise is bounded ‖ε‖ ≤ ε0 <∞. Then, there exists a

constant C(J) <∞ such that, for any 0 ≤ J ≤ β,

‖eJ‖ ≤
(J + 1)ε0

α
+ αJ+1C(J). (3.11)

Moreover, if α = α(ε0) = Cε
1/(J+2)
0 we have that ‖eJ‖ ≤ Cε

1−1/(J+2)
0 .

This error result for iterated Tikhonov-Lavrentiev regularization is similar to that of

iterated Tikhonov regularization, see [23,51,107].

3.3 MODIFICATION TO TIKHONOV REGULARIZATION

Algorithm 3.3.1 defines a modification to the iterated Tikhonov-Lavrentiev regularization

(MITLAR) for the differential filter. We analyze the error in the continuous case by separat-

ing it into the following components: the regularization error in the MITLAR algorithm and

the amount of noise amplification due to our regularization. We then discretize MITLAR

in Algorithm 3.3.9. We analyze the error in the discretized case by separating it into the

following components: the regularization error in the continuous MITLAR algorithm, the

discretization error in the solution, and the discretized noise amplification due to the discrete

MITLAR algorithm.

Algorithm 3.3.1. (Modified Iterated Tikhonov-Lavrentiev Regularization [MITLAR]) Given

convolved data u satisfying Gutrue = u, fix the maximum number of iterations J ≥ 1 and

regularization parameter α > 0. Solve for u0 satisfying

[(1− α)G+ αI]u0 = ū. (3.12)

Then for j = 1, ..., J solve for uj satisfying

[(1− α)G+ αI](uj − uj−1) = ū−Guj−1. (3.13)
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Define the following regularization operators Dα and Dα,j for convenience of notation.

Definition 3.3.2. For α > 0 define the modified Tikhonov-Lavrentiev operator Dα to be

Dα = [(1− α)G+ αI]−1. (3.14)

For j > 0, define the jth modified iterated Tikhonov-Lavrentiev operator Dα,j by

Dα,ju = uj, (3.15)

where uj is obtained via Algorithm 3.3.1.

Remark 3.3.3 (Variational formulation of MITLAR). Assume G is the differential filter

defined in (3.6). Algorithm 3.3.1 is equivalent to the following variational formulation. Given

u ∈ L2(Ω), then uJ = DJu is the unique solution to the following equations

αδ2 (∇u0,∇v) + (u0, v) = (u, v) , ∀v ∈ X, and (3.16)

αδ2 (∇uj,∇v) + (uj, v) = (u, v) + αδ2 (∇uj−1,∇v) , ∀v ∈ X.

Theorem 3.3.8 shows that this modification to Tikhonov-Lavrentiev regularization pro-

vides a higher order deconvolution error compared to iterated Tikhonov-Lavrentiev regu-

larization. The following lemmas and propositions are needed for the proof of Theorem

3.3.8.

Lemma 3.3.4. For 0 ≤ α ≤ 1, the function f(x) = ((1−α)x+α)−1 maps the interval (0, 1]

to [1, 1
α

), and the function g(x) = x((1− α)x+ α)−1 maps the interval (0, 1] to (0, 1].

Proof. The term (1− α)x+ α is a convex combination of x and 1, so

α < (1− α)x+ α ≤ 1, and

1 ≤ 1

(1− α)x+ α
<

1

α
.

For the bounds on g(x), consider

g′(x) = x((1− α)x+ α)−2.

So g′(x) has no critical points in the interval (0, 1). Therefore g(x) attains its extrema on

the boundary of [0, 1]. Note that g(1) = 1, and g(x) = 0 if and only if x = 0. Therefore

g : (0, 1]→ (0, 1].
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Lemma 3.3.5. For 0 ≤ α ≤ 1, the operators Dα, DαG, and I − DαG are bounded. In

particular, they satisfy

‖Dα‖ ≤
1

α
, ‖DαG‖ ≤ 1, and ‖I −DαG‖ ≤ 1. (3.17)

Proof. The method of proof is similar to that employed in [67]. The differential filter operator

G has a spectrum that lies in (0, 1]. Therefore by Lemma 3.3.4, the spectrum of Dα =

((1 − α)G + αI)−1 lies between [1, 1
α

). Also by Lemma 3.3.4, the spectrum of DαG =

((1 − α)G + αI)−1G lies between (0,1]. Similarly, the spectrum of I − DαG lies between

[0,1).

Proposition 3.3.6. The error equation eJ = utrue − uJ is given by

eJ = (−αδ2)J+1(DαG)J+1(∆J+1u), (3.18)

and the error is bounded

‖eJ‖ ≤ (αδ2)J+1‖∆J+1u‖. (3.19)

Proof. For 0 < j ≤ J , we start with (3.13) and an identity for utrue,

[(1− α)G+ αI](uj − uj−1) = ū−Guj−1 and

[(1− α)G+ αI](utrue − utrue) = ū−Gutrue.

Subtracting these equations and rearranging gives

ej = αDα(I −G)ej−1 = αDαG(G−1 − I)ej−1. (3.20)

For j = 0, we use (3.12) and the true solution

[(1− α)G+ αI]u0 = ū and

[(1− α)G+ αI]utrue = (1− α)u+ αutrue.

Subtraction gives

e0 = αDα(I −G)utrue = αDαG(G−1 − I)utrue. (3.21)
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The norm of the error is bounded by taking the norm of the error equation (3.18) and using

the bound on ‖DαG‖ in (3.17) to obtain

‖eJ‖ = ‖(−αδ2)J+1(DαG)J+1(∆J+1u)‖

≤ (αδ2)J+1‖(DαG)J+1‖‖∆J+1u‖

≤ (αδ2)J+1‖∆J+1u‖.

Proposition 3.3.7. The jth step of the MITLAR algorithm, uj, is given by

uj := Dα,ju = Dα

j∑
i=0

(αDα(I −G))iu. (3.22)

Proof. Starting with (3.13), solve for uj and use the equations

I −DαG = αDα(I −G) and u0 = Dαu.

uj = uj−1 +Dα(u−Guj−1)

= Dαu+ (I −DαG)uj−1

= Dαu+ αDα(I −G)uj−1

= Dα

j∑
i=0

(αDα(I −G))iu.

as claimed.

Noise amplification is one of the fundamental difficulties of ill-posed inverse problems [23].

The noise amplification is studied in Problem 3.1.2 where ū has additive noise ε. The

MITLAR algorithm applied to this problem gives an improvement over iterated Tikhonov

regularization in the noise free portion of the error as shown in Proposition 3.3.6. The bound

on the error in the noisy data is no worse as shown in Theorem 3.3.8.
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Theorem 3.3.8. Under the conditions of Algorithm 3.3.1 and (3.5) and if there exists some

ε0 such that ‖ε‖ < ε0, then the error in the jth step of the MITLAR algorithm is

eJ = (−αδ2)J+1(DαG)J+1(∆J+1u) +Dα

J∑
i=0

(I −DαG)iε. (3.23)

The error is bounded,

‖eJ‖ ≤ (αδ2)J+1‖∆J+1u‖+
(J + 1)ε0

α
. (3.24)

Proof. Using Proposition 3.3.6 and Proposition 3.3.7, we have

uJ = Dα,J(u+ ε)

= Dα,Ju+Dα,Jε

= (−αδ2)J+1(DαG)J+1(∆J+1u) +Dα

J∑
i=0

(I −DαG)iε,

as claimed. To get a bound on the norm of the error, start with the error equation and take

the norm and use the inequalities in (3.17).

‖eJ‖ =

∥∥∥∥∥(−αδ2)J+1(DαG)J+1(∆J+1u) +Dα

J∑
i=0

(I −DαG)iε

∥∥∥∥∥
≤ (αδ2)J+1‖∆J+1u‖+ ‖Dα‖

J∑
i=0

‖(I −DαG)i‖‖ε‖

≤ (αδ2)J+1‖∆J+1u‖+
1

α

J∑
i=0

ε0

≤ (αδ2)J+1‖∆J+1u‖+
(J + 1)ε0

α
.

We see that this is an improvement over modified Tikhonov-Lavrentiev regularization

because of its double asymptotic behavior in α and δ. Each update step in the method

adds an extra factor of αδ2, whereas each update step of Tikhonov-Lavrentiev adds an extra

factor of α.
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3.3.1 Discrete MITLAR applied to the differential operator

The results of the previous section are now extended to the discrete form of the MITLAR

algorithm. The modified iterated Tikhonov-Lavrentiev regularization operator applied to

the differential filter is defined in Definition 3.2.3 variationally on a finite dimensional space.

Algorithm 3.3.9 (Discrete modified iterated Tikhonov-Lavrentiev regularization). Let Xh

be a finite dimensional subspace of X. Let u ∈ X and Ghu = uh ∈ Xh satisfy Definition

3.2.3. Choose α > 0 and filter radius δ > 0 and define uhj = Dh
α,ju recursively by finding the

unique solution in Xh to the problems

αδ2
(
∇uh0 ,∇vh

)
+
(
uh0 , v

h
)

=
(
u, vh

)
, ∀vh ∈ Xh and (3.25)

αδ2
(
∇uhj ,∇vh

)
+
(
uhj , v

h
)

=
(
u, vh

)
+ αδ2

(
∇uhj−1,∇vh

)
∀vh ∈ Xh.

Theorem 3.3.10. Given a filter radius δ > 0 of the differential filter operator G, and fix a

regularization parameter 0 ≤ α ≤ 1 and stopping number J ≥ 0. If ‖∆ju‖L2(Ω) is bounded

for all j ≤ J+1, then the error to the problem in (3.1) using the discrete MITLAR algorithm

is bounded. In particular,

‖u−Dh
α,JG

hu‖L2(Ω) ≤ (αδ2)J+1‖∆J+1u‖L2(Ω)

+ C(
√
αδhk + hk+1) max

0≤j≤J
‖Dα,jGu‖k+1. (3.26)

Proof. Denote ‖ · ‖L2(Ω) by ‖ · ‖. Add and subtract the exact deconvolution term, and then

use the triangle inequality,

‖u−Dh
α,JG

hu‖ ≤ ‖u−Dα,JGu‖+ ‖Dα,JGu−Dh
α,JG

hu‖. (3.27)

The first term of (3.27) is bounded by (3.19)

‖u−Dα,JGu‖ ≤ (αδ2)J+1‖∆J+1u‖.

For the second term of (3.27), start with (3.16) and take v = vh, then subtract equation

(3.25). For j = 1, . . . , J , we have

αδ2
(
∇(uj − uhj ),∇vh

)
+
(
uj − uhj , vh

)
= αδ2

(
∇(uj−1 − uhj−1),∇vh

)
. (3.28)
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The case when j = 0 follows similarly or see [67]. We define ηj = uj −whj and φhj = uhj −whj
for some whj ∈ Xh to be chosen later for each j = 1, . . . , J . Using these definitions, we write

(3.28) as

αδ2
(
∇(ηj − φhj ),∇vh

)
+
(
ηj − φhj , vh

)
= αδ2

(
∇(ηj−1 − φhj−1),∇vh

)
. (3.29)

Take vh = φhj , denote ej = uj − uhj = ηj − φhj , and separate the terms to get

αδ2‖∇φhj ‖2 + ‖φhj ‖2 = αδ2
(
∇ηj,∇φhj

)
+
(
ηj, φ

h
j

)
+ αδ2

(
∇ej−1∇φhj

)
≤ αδ2‖∇ηj‖2 +

αδ2

4
‖∇φhj ‖2 +

1

2
‖ηj‖2 +

1

2
‖φhj ‖2

+ αδ2‖∇ej−1‖2 +
αδ2

4
‖∇φhj ‖2.

Subtract the ‖∇φhj ‖2 term to the left hand side and multiply by 2 to get

αδ2‖∇φhj ‖2 + ‖φhj ‖2 ≤ 2αδ2‖∇ηj‖2 + ‖ηj‖2 + 2αδ2‖∇ej−1‖2.

Use ‖ej‖ ≤ ‖ηj‖+ ‖φhj ‖ and ‖∇ej‖ ≤ ‖∇ηj‖+ ‖∇φhj ‖ to obtain the recursion

αδ2‖∇ej‖2 + ‖ej‖2 ≤ 3αδ2‖∇ηj‖2 + 2‖ηj‖2 + 2αδ2‖∇ej−1‖2. (3.30)

Thus

‖eJ‖ ≤ C(J) max
0≤j≤J

(√
αδ2‖∇ηj‖+ ‖ηj‖

)
(3.31)

This inequality holds for all whj ∈ Xh, so take the infimum over Xh and apply the

approximation inequalities (3.4) to obtain

‖Dα,JGu−Dh
α,JG

hu‖ ≤ C(
√
αδhk + hk+1) max

0≤j≤J
‖Dα,jGu‖k+1. (3.32)

Combining equations (3.19) and (3.32) proves the claim.

Problem 3.1.2 still needs to be addressed. If our data consists of discrete measurements

that contain noise uh + ε, then approximations of the error from that noise are needed. This

problem is addressed by applying the discretized modified iterated Tikhonov-Lavrentiev

algorithm to the discretized data uh + ε.

First, we prove the boundedness of operators Gh, Dh, and Dh
J .
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Lemma 3.3.11. The operators Gh : Xh → Xh, Dh : Xh → Xh, and Dh
J : Xh → Xh are

bounded and furthermore they satisfy

‖Gh‖ ≤ 1, (3.33)

‖Dh‖ ≤ 1

α
, (3.34)

‖Dh
J‖ ≤

J + 1

α
, (3.35)

‖DhGh‖ ≤ 1, and (3.36)

‖I −DhGh‖ ≤ 1. (3.37)

Proof. For the first, take u ∈ Xh then ‖Ghu‖ ≤ ‖uh‖ by Cauchy-Schwartz and Young

inequalities to equation (3.6). For the second, note that Dh = [(1 − α)Gh + αI]−1 is the

convex combination of positive operators, so its spectrum is bounded by 1
α

. For the third,

we write out Dh
J = Dh

∑J
i=0(αDh(I −Gh))i. Then taking u ∈ Xh we obtain,

‖Dh
Ju‖ = ‖Dh

J∑
i=0

(αDh(I −Gh))iu‖ (3.38)

≤ ‖Dh‖
J∑
i=0

‖(αDh(I −Gh))i‖‖u‖ (3.39)

≤ 1

α

J∑
i=0

‖u‖ (3.40)

≤ J + 1

α
‖u‖. (3.41)

The spectrum of DhGh lies in between (0,1] and the spectrum of I −DhGh lies in between

[0,1) proving the result.

Theorem 3.3.12. If the noise ε ∈ Xh is bounded ‖ε‖ ≤ ε0, then the error ej between the

noise free solution and the discretized MITLAR solution applied to noisy data uh + ε is

bounded, and

‖ej‖ := ‖utrue −Dh
J(uh + ε)‖

≤ J + 1

α
ε0 + (αδ2)J+1‖∆J+1u‖

+ C(
√
αδhk + hk+1) max

0≤j≤J
‖Dα,jGu‖k+1. (3.42)
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Proof. Use the triangle inequality to separate the error into two pieces, the true discretization

error and the error associated with noise

‖utrue −Dh
J(uh + ε)‖ ≤ ‖Dh

Jε‖+ ‖utrue −Dh
J(uh)‖. (3.43)

Use Lemma 3.3.11to bound the first term,

‖Dh
Jε‖ ≤

J + 1

α
‖ε‖. (3.44)

Theorem 3.3.10 gives a bound on the second term,

‖utrue −Dh
J(uh)‖ ≤ (αδ2)J+1‖∆J+1u‖

+ C(
√
αδhk + hk+1) max

0≤j≤J
‖Dα,jGu‖k+1. (3.45)

Combine these results to prove the claim.

3.4 DESCENT PROPERTIES OF MODIFIED ITERATED

TIKHONOV-LAVRENTIEV APPROXIMATIONS

Problem 3.1.2 for self-adjoint and positive definite G is equivalent to the minimization prob-

lem

v = arg min
v∈X

Eε(v), where Eε(v) :=
1

2
(Gv, v)X − (ū+ ε, v)X

We analyze when the MITLAR approximations u0, u1, . . . form a minimizing sequence for

Eε(·) and the noise-free functional E0(·) := Eε(·)|ε=0.

Proposition 3.4.1. Let G be self-adjoint and positive definite and 0 < α ≤ 1
2
. Then

the Modified Iterative Tikhonov-Lavrentiev iterates are a minimizing sequence for Eε. In

particular,

Eε(uj)− Eε(uj+1) = ([(
1

2
− α)G+ αI](uj+1 − uj), uj+1 − uj) ≥ 0. (3.46)

Thus

Eε(uj+1) < Eε(uj), unless uj+1 = uj.
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Proof. Expand the definitions of Eε(·) and cancel terms to prove the identity.

Eε(uj)− Eε(uj+1) =
1

2
(Guj, uj)− (ū+ ε, uj)−

1

2
(Guj+1, uj+1) + (ū+ ε, uj+1)

=
1

2
(Guj, uj − uj+1) +

1

2
(G(uj − uj+1), uj)− (ū+ ε, uj − uj+1)

=
1

2
(G(uj − uj+1), uj + uj+1)

− ([(1− α)G+ αI](uj+1 − uj) +Guj, uj − uj+1)

=
1

2
(G(uj − uj+1), uj + uj+1)− (G(uj − uj+1), uj+1)

+ α([I −G](uj − uj+1), uj − uj+1)

= ([(
1

2
− α)G+ αI](uj+1 − uj), uj+1 − uj).

Equation (3.46) defines a norm as long as 0 < α ≤ 1
2
, so Eε(uj+1) < Eε(uj) unless

uj+1 = uj as claimed.

Equation (3.13) implies that if uj = uj+1, then Guj = ū + ε. Thus, as j → ∞, uj

converges to the undesired solution of the noisy data problem. This implies that it is critical

to stop after a finite number of update steps.

Problem 3.1.1 desires the solution to the noise-free equation

Gutrue = ū,

from noisy data, we analyze the sequence of noisy MITLAR approximations uj in the noise-

free functional

E0(v) :=
1

2
(Gv, v)X − (ū, v)X .

First, note that E0(v) = Eε(v) + (ε, v), and then by Proposition 3.4.1,

E0(uj)− E0(uj+1) = (ε, uj+1 − uj) + ([(
1

2
− α)G+ αI](uj+1 − uj), uj+1 − uj).

Theorem 3.4.2. Let G be self-adjoint and positive definite. Suppose an estimate on the

noise ||ε||X ≤ ε0 is known. Then the Modified Iterative Tikhonov-Lavrentiev approximations

are a minimizing sequence for the noise-free functional E0 as long as

ε0
||uj+1 − uj||X

≤ α ≤ 1

2
. (3.47)
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Proof. First, the Cauchy-Schwartz inequality implies

|(ε, uj+1 − uj)| ≤ ‖ε‖‖uj+1 − uj‖

Then, if (3.47) holds, then

0 ≤ ‖ε‖‖uj+1 − uj‖ − |(ε, uj+1 − uj)|

≤ α‖uj+1 − uj‖2 − |(ε, uj+1 − uj)|

≤
(

[(
1

2
− α)G+ αI](uj+1 − uj), uj+1 − uj

)
− |(ε, uj+1 − uj)|

≤
(

[(
1

2
− α)G+ αI](uj+1 − uj), uj+1 − uj

)
+ (ε, uj+1 − uj)

= E0(uj)− E0(uj+1).

Theorem 3.4.2 implies that when the size of the updates is larger than twice the noise,

the updates move the approximate solution closer to the noise free solution. As the updates

become smaller, uj begins to deviate from an approximation of the noise free solution unless

α is increased.

This result can be extended if more is known about the noise or its statistical distribution.

In particular if there a projection operator P where Pε ⊥ (uj+1 − uj), then

(ε, uj+1 − uj)X = (ε, (I − P )[uj+1 − uj])X .

In other words, if a component of the MITLAR update is in the range of the projection,

then that updated component will reduce the error to the noise free problem. This suggests

the following small algorithmic modification.
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Algorithm 3.4.3. Given data ū + ε, suppose ‖ε‖X ≤ ε0 and given a projection operator P

satisfying P̄ ε = 0. Fix J ≥ 0. Solve for u0 in

((1− α)G+ αI)u0 = ū+ ε.

Then for j = 1, . . . , J and while ε0
||uj−uj−1||X

≤ α ≤ 1
2
, solve for uj in

((1− α)G+ αI)(uj − uj−1) = ū+ ε−Guj−1

If α < ε0
||uj−uj−1||X

, then either increase α so that the hypothesis for Theorem 3.4.2 applies

and recompute or compute as above uj − uj−1 and calculate

ũj = uj−1 + P (uj − uj−1). (3.48)

Then set Djū := ũj.

3.5 NUMERICAL ILLUSTRATIONS

We investigate several applications. In section 3.5.1, we verify the use of our stopping

criterion. In section 3.5.2, we compare the four methods of Tikhonov, iterated Tikhonov,

modified Tikhonov, and modified iterated Tikhonov in the application of deconvolution of

the differential filter. Section 3.5.3 verifies the convergence rates of the MITLAR algorithm

applied to a test problem.
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Figure 6: True solution, with high and low frequencies, that is filtered to obtain the data in

the stopping criterion problem.

3.5.1 Stopping Criterion

We verify our stopping criterion (Theorem 3.4.2) by choosing a true solution to be u =

sin(πx) + sin(200πx), plotted in Figure 6, over the interval [0, 2].

We discretize the interval with a step size of h = 2
1001

and choosing the filtering radius

for the differential filter to be δ = 6h. Our simulated data was obtained by filtering the true

solution and adding 1% random noise to the filtered data. We select initial regularization

parameter α = 0.1.

Figure 7 shows the noise-free functional calculated with the noisy MITLAR approxima-

tion uj. The calculated optimal stopping point (via Theorem 3.4.2) occurs after J = 4 steps
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and is shown as a green dot. Theorem The figure demonstrates the how the algorithm stops

before the noise-free energy functional increases and converges to the noisy solution.
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Figure 7: Noise-free energy functional calculated for values of J between 0 and 40. The

stopping criterion forces us to stop after 4 iteration steps (as shown with the green dot).

Notice the stopping criterion stopped the algorithm before the iterations converge to the

noisy solution.

3.5.2 Comparison of Four Deconvolution Algorithms

We check the efficiency of Algorithm 3.3.1 by comparing the relative error of a solution

for a given parameter α to the relative errors found with Tikhonov-Lavrentiev, Iterative

Tikhonov-Lavrentiev, and Modified Tikhonov-Lavrentiev using the same α. We start out
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with the original data as u = sin(πx) + 0.1sin(100πx), with 1000 sample points taken over

the interval [0, 2]; hence the step size is h = 2/1001. We set our filtering radius at δ = 0.01.

We let the α vary from 1 to 10−3 and calculate 1, 2, and 3 steps for the iterative methods.

The results are shown in Figures 8, 9, and 10 respectively.
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Figure 8: Relative errors for the four algorithms with 1 iterative step over α = 10−3 to

α = 1. Notice that the modified iterated Tikhonov-Lavrentiev plot has the lowest error over

the entire range of regularization parameters.
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Figure 9: Relative errors for the four algorithms with 2 iterative step over α = 10−3 to

α = 1. Notice that the modified iterated Tikhonov-Lavrentiev plot has the lowest error over

the entire range of regularization parameters.

3.5.3 Verification of Convergence Rates

We calculate the convergence rates of three different problems to verify the convergence rates

predicted in Theorem 3.3.10. We take a true solution over the domain [0, 1]× [0, 1] of

u = sin(πx) sin(πy).

We discretize using the square command in FreeFEM++ [72] with n × n intervals and

use piecewise continuous linear polynomials. We use a filter radius of δ = 0.1(2π
n

)1/4 and
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Figure 10: Relative errors for the four algorithms with 3 iterative step over α = 10−3 to

α = 1. Notice that the modified iterated Tikhonov-Lavrentiev plot has the lowest error over

the entire range of regularization parameters.

regularization parameter α = 0.1(2π
n

)1/2.

The theoretical convergence rate predicted by Theorem 3.3.10 for J = 0 is O(h). Table

2
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Table 2: Convergence rates for MITLAR J = 0. The convergence rates are approximating

the theoretical value of 1 (error = O(αδ2) = O(h)).

n L2 error rate H1 error rate

20 0.00308162 0.0136919

40 0.00154557 0.995547 0.00686712 0.995547

60 0.00103144 0.997457 0.0045828 0.997457

80 0.000773982 0.998207 0.00343888 0.998207

100 0.000619377 0.998612 0.00275195 0.998612

120 0.000516254 0.998867 0.00229377 0.998867

140 0.000442569 0.999043 0.00196638 0.999043

Table 3: Convergence rates for MITLAR J = 1. The convergence rates are approximating

the theoretical value of 2 (error = O((αδ2)2) = O(h2)).

n L2 error rate H1 error rate

20 1.89939e-05 8.43985e-05

40 4.77789e-06 1.99109 2.12376e-05 1.9906

60 2.12789e-06 1.99491 9.46506e-06 1.99318

80 1.19818e-06 1.99641 5.33555e-06 1.99253

100 7.6731e-07 1.99722 3.42222e-06 1.99021

120 5.33075e-07 1.99773 2.38236e-06 1.98658

140 3.91763e-07 1.99807 1.75523e-06 1.98179
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Table 4: Convergence rates for Tikhonov J = 0. The convergence rates are approximating

the theoretical value of 1/2 (error = O(α) = O(h1/2)).

n L2 error rate H1 error rate

20 1.89939e-05 8.43985e-05

40 4.77789e-06 1.99109 2.12376e-05 1.9906

60 2.12789e-06 1.99491 9.46506e-06 1.99318

80 1.19818e-06 1.99641 5.33555e-06 1.99253

100 7.6731e-07 1.99722 3.42222e-06 1.99021

120 5.33075e-07 1.99773 2.38236e-06 1.98658

140 3.91763e-07 1.99807 1.75523e-06 1.98179

Table 5: Convergence rates for Tikhonov J = 1. The convergence rates are approximating

the theoretical value of 1 (error = O(α2) = O(h)).

n L2 error rate H1 error rate

20 0.00171708 0.00762915

40 0.000839742 1.03194 0.00373106 1.03194

60 0.000553807 1.02667 0.00246062 1.02667

80 0.00041256 1.02347 0.00183305 1.02347

100 0.000328488 1.02124 0.0014595 1.02124

120 0.000272764 1.01957 0.00121192 1.01957

140 0.000233141 1.01826 0.00103587 1.01826
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3.6 CONCLUSION

We introduced a novel tool for solving inverse problems, that is the modified iterated

Tikhonov-Lavrentiev regularization algorithm. We show that the noise free errors in us-

ing this method are doubly asymptotic in α and δ, that is O((αδ2)J+1), when applied to the

deconvolution of the differential filter. However, using Tikhonov-Lavrentiev regularization

or iterated Tikhonov-Lavrentiev regularization only results in noise free errors depending on

α, O(α) and O(αJ+1) respectively.

We also introduce a tool for calculating when to stop the iteration steps for our iterated

algorithm. We show that continuing to iterate until the solution converges gives the un-

wanted, noisy solution. However, our stopping criterion guarantees that the iteration steps

are getting closer to the noise free solution.

The example chosen to illustrate the stopping criterion did not show optimal stopping.

This is due to the restriction on regularization parameter that α ≤ 1
2
. If we incorporated

more knowledge about the noise added into the model, then we would be able to get a more

accurate bound on the maximum number of iteration steps. As it is, the method will always

stop us before the minimum energy.
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4.0 APPLICATION OF MITLAR TO FLOW MODELING

“A cloud is made of billows upon billows upon billows that look like clouds. As you come

closer to a cloud you don’t get something smooth, but irregularities at a smaller scale.”

(Benoit Mandelbrot)

4.1 CONTINUOUS APPROXIMATION OF NSE

The Navier-Stokes equations (NSE) constitute a well-accepted continuum model for incom-

pressible, viscous, Newtonian fluids with a wide range of applications in climate modeling,

energy sciences, and bio-engineering. We consider flow in a sufficiently smooth domain

Ω ⊂ R3, with velocity field u, pressure p, and body force f . Let Re = LU/ν be the

Reynold’s number, ν > 0 the kinematic viscosity, L and U the problem’s characteristic

length and velocity respectively.

Problem 4.1.1 (Navier-Stokes equation). Find u : Ω× (0, T )→ R3 and p : Ω× (0, T )→ R

satisfying

ut + u · ∇u−Re−1∆u +∇p = f , ∇ · u = 0. (4.1)

For turbulent flows (characterized by Re >> 1) in complex domains, it is infeasible to

properly resolve all persistent and energetically significant scales down to the Kolmogorov

length scale of O(Re−3/4) with a direct numerical simulation in a given time constraint.

Various methods have been employed to approximate NSE-solutions. Regularization meth-

ods are particularly enticing because they are simple and efficient to implement. Although

many regularization methods have been analyzed for this problem, there are still many open
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considerations. Among regularization methods, ones currently studied include

(Leray) ut + u · ∇u−Re−1∆u +∇p = f and ∇ · u = 0,

(NS-α) ut + u× (∇× u)−Re−1∆u +∇P = f and ∇ · u = 0,

(NS-ω) ut + u× (∇× u)−Re−1∆u +∇P = f and ∇ · u = 0,

(time relaxation) ut + u · ∇u−Re−1∆u +∇p+ χ(u− u) = f and ∇ · u = 0.

where u is an averaged velocity field u, p is pressure, and P , Bernoulli pressure. All are simple

to approximate with known methods but are not accurate. Moreover, only time relaxation

regularization truncates scales sufficiently for practical computations: the time relaxation

term χ(u − u) for χ > 0 damps unresolved fluctuations over time [60, 98]. Significant

improvements based on using deconvolution operators, i.e. replacing u by D(u), to all four

have been studied.

The general Leray-deconvolution problem (Du instead of u) was proposed by Dunca

in [19] as a more accurate extension to Leray’s model [63]. Leray took G (also frequently

denoted by overbar), the smoothing operator, to be the Gaussian filter. Germano proposed

the differential filter G = (−δ2∆+I)−1 for some filter length δ > 0 which is an approximation

of the Gaussian and fits nicely in the variational framework of the finite element method [27].

Previous analysis of the time-relaxation model used the van Cittert deconvolution opera-

tors which are very easy to program but somewhat expensive [60]. Another popular example

for stable deconvolution is Tikhonov-Lavrentiev regularization D = (G + αI)−1, for some

0 < α ≤ 1. Previous analysis of the Leray-deconvolution model used Tikhonv-Lavrentiev

regularization [67]. Determining the appropriate value of α to ensure stability while preserv-

ing accuracy of the approximation is a challenging problem, see e.g. [14, 29, 36, 38, 39, 62].

Alternatively, iterated Tikhonov regularization is well-known to decouple stability and accu-

racy from the selection of regularization parameter α, see e.g. [21,23,51,107]. It is a special

case of the general deconvolution operator we propose herein, which attains high accuracy

at reduced computational cost.

We study a synthesis of the Leray deconvolution and time relaxation models with this

general deconvolution operator.
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Problem 4.1.2 (Leray-deconvolution, time relaxation). Find velocity u : Ω × (0, T ) → R3

and pressure π : Ω× (0, T )→ R approximations satisfying

ut +D(u) · ∇u−Re−1∆u +∇π + χ(u−D(u)) = f , ∇ · u = 0. (4.2)

The fundamental issues associated with regularization methods include ensuring that

• scales are truncated (i.e. model microscale = filter radius = mesh width)

• smooth parts of the solution are accurately approximated, i.e. D(u) approaches u for

smooth u, and

• physical fidelity of flow is preserved.

Due to the nonlinearity in (4.2), differences choices of D yield significant changes in the

solution of the induced model. We propose and provide analysis herein for a general family

of regularization operators (Section 4.2.2). In particular, we consider a base deconvolution

operator D satisfying minimal conditions described in Assumption 4.2.4. From these condi-

tions and motivated by the improvement in accuracy suggested by (4.4), we study a sequence

of associated updates: for j = 1, 2, . . ., define Dj by ωj := Dju through

ω0 := Du, ωj − ωj−1 := D(u− ωj−1). (4.3)

These iterates represent defect correction generalization of iterated Tikhonov regularization

operator [51]. The idea is to choose α small but conservatively large and then update to

recover high accuracy. For example,

Modified Tikhonov (j = 0) error(u−DGu) ≤ O(αδ2)

Iterated Modified Tikhonov (j > 0) error(u−DGu) ≤ O((αδ2)j)

(4.4)

In Section 4.2 we provide notation and definitions necessary for the scheme and for the

numerical analysis. We provide a brief overview of differential filters (continuous and dis-

crete) in Section 4.2.1. We propose a general family of regularization operators D (continuous

and discrete) in Section 4.2.2. In Section 4.2.3 we show that the updated approximations
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Dj derived from base deconvolution operator D inherit all of the properties of D (Assump-

tion 4.2.5) in Proposition 4.2.9. We present a specific example of the iterated modified

Tikhonov-Lavrentiev regularization operator in Section 4.2.4 based on

D = ((1− α)G+ αI)−1

that satisfies the proposed conditions.

In Section 4.3, we propose and analyze a finite element spatial and Crank-Nicolson tem-

poral discretization of (4.2) based on the family of deconvolution operators D, Dj satisfying

Assumption 4.2.5. In Section 4.4, we show that the proposed family of Leray-deconvolution

problems with time relaxation is well-posed and stable (Theorem 4.4.5). In Section 4.5, a

convergence theory is presented in the form of Theorem 4.5.1, for α, δ, h,∆t → 0, where

h > 0 is a characteristic spatial discretization parameter, and ∆t > 0 is the time-step size.

Numerical experiments are presented in Section 4.6.

4.2 PRELIMINARIES AND MODEL FORMULATION

We use standard notation for Lebesgue and Sobolev spaces and their norms. Let ||·|| and (·, ·)

be the L2-norm and inner product respectively. Let ||·||p,k := ||·||Wk
p (Ω) represent the W k

p (Ω)-

norm. We write Hk(Ω) := W k
2 (Ω) and || · ||k for the corresponding norm. Let the context

determine whether W k
p (Ω) denotes a scalar, vector, or tensor function space. For example

let v : Ω → Rd. Then, v ∈ H1(Ω) implies that v ∈ H1(Ω)d and ∇v ∈ H1(Ω) implies that

∇v ∈ H1(Ω)d×d. Write Wm
q (0, T ;W k

p (Ω)) = Wm
q (W k

p ) equipped with the standard norm.

For example,

||v||Lq(Wk
p ) :=


(∫ T

0

||v(·, t)||qp,kdt
)1/q

, if 1 ≤ q <∞

ess sup0<t<T ||v(·, t)||p,k, if q =∞.

Let the flow domain Ω ∈ Rd, d = 2, 3, be a regular, bounded, polyhedral. Denote the

pressure and velocity spaces by Q := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
and X := H1

0 (Ω) =
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{v ∈ H1(Ω) : v|∂Ω = 0} respectively. A weak formulation of (4.1) with homogeneous Dirich-

let boundary data is: Find u : [0, T ]→ X and p : [0, T ]→ Q for a.e. t ∈ (0, T ] satisfying

(ut,v) + (u · ∇u,v) +Re−1(∇u,∇v)− (p,∇ · v) = (f ,v), ∀v ∈ X (4.5)

(q,∇ · u) = 0, ∀q ∈ Q (4.6)

u(x, 0) = u0(x), a.e. x ∈ Ω. (4.7)

Let V := {v ∈ H1
0 (Ω) : ∇ · v = 0}. We say that u is a strong solution of the NSE if it

satisfies (4.5), (4.6), (4.7), u ∈ L2(0, T ;X) ∩ L∞(0, T ;L2(Ω)) ∩ L4(0, T ;X), p ∈ L2(0, T ;Q),

and ut ∈ L2(0, T ;X∗), and u(x, t)→ u0(x) ∈ V a.e. as t→ 0.

Restricting test functions v ∈ V reduces (4.5), (4.6), (4.7) to: find u : [0, T ] → V

satisfying

(ut,v) + (u · ∇u,v) +Re−1(∇u,∇v) = (f ,v), ∀v ∈ V. (4.8)

and (4.7). Solving the problem associated with (4.8), (4.7) is equivalent to (4.5), (4.6), (4.7).

Let τh be a uniformly regular triangulation (see [30] for a precise definition) of Ω with

E ∈ τh (e.g. triangles for d = 2 or tetrahedra for d = 3). Set h = supE∈τh {diameter(E)}.

Let Xh ⊂ X and Qh ⊂ Q be a conforming velocity-pressure mixed finite element space. We

provide a more precise setting for the problem discretization in Section 4.3.

4.2.1 Differential filters

Definition 4.2.1. Let Y be a Hilbert space and T : Y → Y . Write T ≥ 0 if T is self-adjoint

T = T ∗ and (Tv,v)Y ≥ 0 for all v ∈ Y and call T symmetric non-negative (snn). Write

T > 0 if T is self-adjoint T = T ∗ and (Tv,v)Y > 0 for all 0 6= v ∈ Y and call T symmetric

positive-definite (spd).

Let G = G(δ) > 0 be a linear, bounded, compact operator on X representing a generic

smoothing filter with filter radius δ > 0:

G : L2(Ω)→ L2(Ω), Gφ = φ

One example of this operator is the continuous differential filter G = A−1 (Definition 4.2.2),

which is used, together with its discrete counterpart A−1
h (Definition 4.2.3), for both imple-

mentation and analysis of our numerical scheme.
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Definition 4.2.2 (Continuous differential filter). Fix φ ∈ L2(Ω). Then φ ∈ X is the unique

solution of −δ2∆φ+ φ = φ with corresponding weak formulation

δ2(∇φ,∇v) + (φ,v) = (φ,v), ∀v ∈ X. (4.9)

Set A = −δ2∆ + I so that A−1 : L2(Ω)→ X defined by φ = A−1φ is well-defined.

Definition 4.2.3 (Discrete differential filter). Fix φ ∈ L2(Ω). Then φ
h ∈ Xh is the unique

solution of

δ2(∇φh,∇vh) + (φ
h
,vh) = (φ,vh), ∀vh ∈ Xh. (4.10)

Set Ah = −δ2∆h + Πh so that A−1
h : L2(Ω) → Xh defined by φ

h
= A−1

h φ is well-defined.

Here, Πh : L2(Ω)→ Xh is the L2 projection and ∆h : X → Xh the discrete Laplace operator

satisfying

(Πhφ− φ,vh) = 0, (∆hφ,v
h) = −(∇φ,∇vh) ∀vh ∈ Xh. (4.11)

It is well-known that A−1, A−1
h are each linear and bounded, A−1 is compact, and the

spectrum of A, Ah (on X, Xh respectively) is contained in [1,∞) and spectrum of A−1, A−1
h

(on X, Xh respectively) is contained in (0, 1] so that

A−1 > 0 on X, A−1
h > 0 on Xh. (4.12)

For more detailed exposition on these operators, see [67].

4.2.2 A family of deconvolution operators

We analyze (4.2) for stable, accurate deconvolutions D of the smoothing filter G introduced

in Section 4.2.1 so that DG(u) accurately approximates u. Due to the nonlinearity in (4.2)

small perturbations in D yield significant changes in the solution of the induced model. We

propose herein minimal conditions on D (Assumption 4.2.4) to ensure (4.2) results in a stable

and accurate regularized discretization of (4.1).
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Assumption 4.2.4 (Continuous deconvolution operator). Suppose that D : X → X is

linear, bounded, spd, and commutes with G such that

||DG|| ≤ 1, ||∇(DGv)|| ≤ d1||∇v|| ∀ v ∈ X, (4.13)

for some constant d1 > 0. Moreover, suppose that D is parametrized by α > 0, δ > 0 such

that D = D(δ, α) and

||(I −DG)v|| ≤ c1(δ, α; v)→ 0, as δ, α→ 0 (4.14)

for any v ∈ X ∩Hk(Ω) for some k ∈ N and c1 = c1(δ, α; v) > 0.

Note that the first estimate in (4.13) is required so that the spectral radius satisfies

ρ(DG) ≤ 1. The second estimate in (4.13) (which controls the H1-semi-norm of DG) and

the approximation (4.14) are both required for the convergence analysis in Section 4.5.

We require a discrete analogue Dh : Xh → Xh of the continuous deconvolution operator

D : X → X.

Assumption 4.2.5 (Discrete deconvolution operator). Let D satisfy Assumption 4.2.4. Let

Gh : Xh → Xh be a discrete analogue of G that is linear, bounded, spd. Suppose that

Dh : Xh → Xh is linear, bounded, spd, and commutes with Gh such that

||DhGh|| ≤ 1, ||∇DhGhv|| ≤ d1||∇v|| ∀ v ∈ X (4.15)

for some constant d1 > 0. Moreover, suppose that Dh is parametrized by α > 0, δ > 0, h

such that D = D(h, δ, α) and

||(DG−DhGh)v|| ≤ c2(h, δ, α; v)→ 0, as h, δ, α→ 0 (4.16)

for all v ∈ X ∩Hk(Ω) for some fixed k ∈ N and c2 = c2(h, δ, α; v) > 0.

The estimates in (4.15) are motivated by the continuous case of (4.13). The approx-

imation (4.16) is required for the convergence analysis in Section 4.5 (see Theorem 4.5.1,

Corollary 4.5.2).
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Remark 4.2.6. If D = f(G) for some continuous map f : R → R, then commutativity is

satisfied DG = GD. Tikhonov-Lavrentiev (modified) regularization with G = A−1, Gh = A−1
h

given by D = ((1 − α)A−1 + αI)−1, Dh = ((1 − α)A−1
h + αΠh)

−1 is one such example with

f(x) = ((1− α)x+ α)−1 and d1 = 1, c1 = αδ2||∆v||, c2 = (δhk + hk+1)||v||k+1, see [67].

Moreover, letting λk(·) denote the k-th (ordered) eigenvalue of a given operator, commu-

tativity of D and G provides λk(DG) = λk(D)λk(G) and similarly for the discrete operator

DhGh.

We next derive several important consequences of D, Dh under Assumptions 4.2.4, 4.2.5

required in the forthcoming analysis.

Lemma 4.2.7. Suppose that G, Gh, D, Dh satisfy Assumptions 4.2.4 and 4.2.5. Then,

||DGv|| ≤ ||v|| and
∣∣∣∣DhGhv

∣∣∣∣ ≤ ||v|| ∀v ∈ L2(Ω). (4.17)

Proof. For the continuous operator,

||DGv|| ≤ ||DG|| ||v||.

Then, the first equation in (4.17) follows from Assumption 4.2.4, and the second is derived

similarly applying Assumption 4.2.5 instead.

Lemma 4.2.8. Suppose that G, Gh, D, Dh satisfy Assumptions 4.2.4 and 4.2.5. Then, the

spectrum of both DG and DhGh are contained in [0, 1] so that

||I −DG|| ≤ 1, ||I −DhGh|| ≤ 1. (4.18)

As a consequence,

||v||2? := (v −DGv,v)

||v||2?h := (v −DhGhv,v)

 ≥ 0, ∀v ∈ L2(Ω). (4.19)
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Proof. Assumptions 4.2.4 and 4.2.5 guarantee that the spectral radius ρ(DG) ≤ 1 and

ρ(DhGh) ≤ 1. Also, D > 0, G > 0 and commute so that DG ≥ 0. Similarly, DhGh ≥ 0.

Therefore, the spectrum of DG, DhGh ≥ 0 are each contained in [0, 1]. So, I − DG,

I − DhGh ≥ 0 have spectrum contained in [0, 1] which ensures the non-negativity of both

|| · ||? and || · ||?h.

4.2.3 Iterated deconvolution

One can show, by eliminating intermediate steps in the definition of the iterated regulariza-

tion operator Dj in (4.3) with base operator D satisfying Assumption 4.2.4, that

Dj = D

j∑
i=0

(FD)i, F := D−1 −G (4.20)

Similarly, the discrete iterated regularization operator Dh
j with discrete base operator Dh

satisfying Assumption 4.2.5, is given by

Dh
j = Dh

j∑
i=0

(F hDh)i, F h := (Dh)−1 −Gh (4.21)

We next show that Dj, D
h
j for j > 0 inherit several important properties from D, Dh via

Assumption 4.2.5.

Proposition 4.2.9. Fix j ∈ N. Then Dj : X → X defined by (4.20) satisfies Assumption

4.2.5. In particular, Dj > 0 is linear, bounded, commutes with G and satisfies (4.13)(a).

Estimate (4.13)(b) is replaced by

||∇(DjGv)|| ≤ d1,j||∇v|| ∀ v ∈ X, (4.22)

for some constant d1,j > 0. Estimate (4.14) is replaced by

||(I −DjG)v|| ≤ c1,j(δ, α; v) → 0, as δ, α→ 0 (4.23)

for any v ∈ X ∩Hk(Ω) for some k ∈ N where c1,j = c1,j(δ, α; v) > 0. Moreover,

d1,j ≤
j∑
i=0

di1, c1,j ≤
j∑
i=0

ci1.
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Proof. First notice that Dj is linear and bounded since it is a linear combination of linear and

bounded operators D(FD)i = D(I −DG)i, for i = 0, 1, . . . , j. Moreover, since G commutes

with D, it follows that G commutes with D(I−DG)i and hence with Dj. Next, Dj is a sum

of spd and snn operators D > 0, D(I −DG)i ≥ 0. Hence, Dj > 0.

Next, notice that

DjG =

(
j∑
i=0

(I −DG)i

)
DG =

(
I + (I −DG) + . . .+ (I −DG)j

)
DG. (4.24)

Letting λk(·) denote the k-th (ordered) eigenvalue of a given operator, we can characterize

the spectrum of Dj by summing the resulting finite geometric series (4.24) to get

λk(DjG) = λk(D)λk(G)

j∑
i=0

(1− λk(DG))i =
(
1− (1− λk(DG))j+1

)
. (4.25)

Then under Assumption 4.2.4, Lemma 4.2.8 with (4.25) implies that 0 ≤ λk(DjG) ≤

||DjG|| ≤ 1. Hence, Dj satisfies (4.13)(a). Expanding out the terms in (4.24) as powers

of DG, we see that (4.24) can be written as a polynomial (with coefficients ai) in DG, so

that

∇DjGv =

j∑
i=0

ai∇(DG)iv and ||∇DjGv|| ≤ C

j∑
i=0

di1||∇v||, (4.26)

since ||∇DGv|| ≤ d1||∇v|| can be applied successfully. Therefore (4.22) follows with d1,j =∑j
i=0 d

i
1. Next, start with (4.24) to get

||(I −DjG)v|| = ||
(
(I −DG)v +DG(I −DG)v + . . .+DG(I −DG)jv

)
||

≤ ||(I −DG)v||+ ||DG||||(I −DG)v||+ . . .+ ||DG||||I −DG||j−1||(I −DG)v||

Estimate (4.23) follows by noting ||DG|| ≤ 1, ||I − DG|| ≤ 1, and by Assumption 4.2.5,

||(I −DG)v|| ≤ c1.
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Proposition 4.2.10. Fix j ∈ N. Then Dh
j : Xh → Xh defined by (4.21) satisfies Assumption

4.2.5. In particular, Dh
j > 0 is linear, bounded, commutes with Gh and satisfies (4.15)(a).

Estimate (4.15)(b) is replaced by

||∇(Dh
jG

hv)|| ≤ d1,j||∇vh|| ∀ vh ∈ Xh (4.27)

for some constant d1,j > 0. Estimate (4.16) is replaced by

||(DjG−Dh
jG

h)v|| ≤ c2,j(h, δ, α; v) → 0, as h, δ, α→ 0 (4.28)

for any v ∈ X ∩Hk(Ω) for some k ∈ N where c2,j = c2,j(h, δ, α; v) > 0. Moreover,

c2,j ≤ α(j)c2

for some constant α = α(j) > 0.

Proof. The first two assertions follow similarly as in the previous proof of Proposition 4.2.9.

To prove (4.28), we start by writing

Dh
jG

h =

(
j∑
i=0

(I −DhGh)i

)
DhGh (4.29)

and then subtract (4.29) from (4.24) to get

DjG−Dh
jG

h = Λj(DG−DhGh) + (Λj − Λh
j )D

hGh, (4.30)

where

Λj =

j∑
i=0

(I −DG)i, Λh
j =

j∑
i=0

(I −DhGh)i.

Then taking norms across (4.30), we get

||(DjG−Dh
jG

h)v|| = ||Λj||||(DG−DhGh)v||+ ||DhGh||||(Λj − Λh
j )v||. (4.31)
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Notice that ||I − DG|| ≤ 1 so that ||Λj|| ≤ j + 1. Moreover, ||(DG − DhGh)v|| ≤ c2 via

Assumption 4.2.5. Next, using the binomial theorem and factoring, we get

||(Λj − Λh
j )v|| =

∥∥∥∥∥
j∑
i=0

j!

i!(j − i)!
(−1)i

[
(DG)i − (DhGh)iv

]∥∥∥∥∥
=

∥∥∥∥∥
j∑
i=0

j!

i!(j − i)!
(−1)i

[
i∑

n=0

(DG)n(DhGh)n−i

]
(DG−DhGh)v

∥∥∥∥∥ . (4.32)

Then, applying ||DG|| ≤ 1, ||DhGh|| ≤ 1 to (4.32) provides

||(Λj − Λh
j )v|| =

(
j∑
i=0

j!i

(i)!(j − i)!

)
||(DG−DhGh)v||.

Again, ||(DG−DhGh)v|| ≤ c2 via Assumption 4.2.5. So, we combine these above results to

conclude (4.28) with α(j) =
∑j

i=0
j!i

(i)!(j−i)! .

4.2.4 Tikhonov-Lavrentiev regularization

We provide two examples of discrete deconvolution operators Dh to make the abstract for-

mulation in the previous section more concrete. The Tikhonov-Lavrentiev and modified

Tikhonov-Lavrentiev operator (for linear, compact G > 0) is given by

Tikhonov-Lavrentiev ⇒ Dα,0 = (G+ αI)−1

modified Tikhonov-Lavrentiev ⇒ Dα,0 = ((1− α)G+ αI)−1

(4.33)

Definition 4.2.11 (Modified Tikhonov-Lavrentiev deconvolution (weak)). Fix α > 0. Let

G = A−1. For any w ∈ X, let ω0 := Dα,0w ∈ X be the unique solution of

αδ2 (∇ω0,∇v) + (ω0,v) = (w,v) , ∀v ∈ X. (4.34)

Definition 4.2.12 (Modified Tikhonov-Lavrentiev deconvolution (discrete)). Fix α > 0.

Let Gh = A−1
h and Dh

α,0 =
(
(1− α)A−1

h + αΠh

)−1
. For any w ∈ X, let ωh0 := Dh

α,0w
h ∈ Xh

be the unique solution of

αδ2
(
∇ωh0 ,∇vh

)
+
(
ωh0 ,v

h
)

=
(
w,vh

)
, ∀vh ∈ Xh. (4.35)
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The iterated modified Tikhonov-Lavrentiev operator (for linear, compact G > 0) is

obtained from the Tikhonov-Lavrentiev operator with updates via (4.3):

Iterated Tikhonov-Lavrentiev ⇒ Dα,j = Dα,0

j∑
i=0

(αDα,0)i

Iterated modified Tikhonov-Lavrentiev ⇒ Dα,j = Dα,0

j∑
i=0

(α(I −G)Dα,0)i

(4.36)

Definition 4.2.13 (Iterated modified Tikhonov-Lavrentiev deconvolution (weak)). Fix α >

0 and J ∈ N. Let G = A−1. Define ω−1 = 0, then for any w ∈ X and j = 1, 2, . . . , J , let

ωj := Dα,jw ∈ X be the unique solution of

αδ2 (∇ωj,∇v) + (ωj,v) = (w,v) + αδ2 (∇ωj−1,∇v) , ∀v ∈ X. (4.37)

Definition 4.2.14 (Iterated modified Tikhonov-Lavrentiev deconvolution (discrete)). Fix

α > 0 and J ∈ N. Let Gh = A−1
h , and Dh

α,j = Dh
α,0

∑j
i=0

(
α(Πh − A−1

h )Dh
α,0

)i
. Define

ωh−1 = 0, then for any w ∈ X and j = 1, 2, . . . , J , let ωhj := Dh
α,jw

h ∈ Xh be the unique

solution of

αδ2
(
∇ωhj ,∇vh

)
+
(
ωhj ,v

h
)

=
(
w,vh

)
+ αδ2

(
∇ωhj−1,∇vh

)
, ∀vh ∈ Xh. (4.38)
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4.3 FULLY DISCRETE APPROXIMATION

We require a more precise setting and approximating properties of the finite element space

Xh ×Qh. Assume that Xh ×Qh satisfy an inf-sup condition of the form

inf
q∈Qh

sup
v∈Xh

(q,∇ · v)

||∇v||||q||
≥ C > 0. (4.39)

and that u ∈ L2(Hk+1), and p ∈ L2(Hs+1) for some k ≥ 0, s ≥ 0. Then there exists C > 0

such that

inf
vh∈Xh

||u− vh||+ h inf
vh∈Xh

||u− vh||1 ≤ Chk+1||u||k+1

inf
qh∈Qh

||p− qh|| ≤ Chs+1||p||s+1.

(4.40)

We also need an inverse triangle inequality as follows

||∇vh|| ≤ Ch−1||vh||, ∀vh ∈ Xh. (4.41)

Let V h = {v ∈ Xh : (q,∇ · v) = 0 ∀q ∈ Qh}. Note that in general V h 6⊂ V . For the time-

discretization, let 0 = t0 < t1 < . . . < tM−1 = T < ∞ be a discretization of the time

interval [0, T ] for a constant time step ∆t = tn+1− tn. If ξ is a continuous variable, we write

ξ(tn+1/2) = ξ((tn+1 + tn)/2) and if ξ is either continuous or discrete, ξn+1/2 = 1
2
(ξn+1 + ξn).

Lastly, we require a skew-symmetrization for the convective term:

b∗(u,v,w) :=
1

2
(u · ∇v,w)− 1

2
(u · ∇w,v). (4.42)

The trilinear from b∗(·, ·, ·) is continuous and skew-symmetric on X ×X ×X.

Problem 4.3.1 (CNFE for Leray-Deconvolution). Let (w0, π0) ∈ (Xh, Qh). Then, for each

n = 0, 1, . . . ,M − 1, find (wh
n+1, π

h
n+1) ∈ (Xh, Qh) satisfying

1

∆t
(wh

n+1 −wh
n,v

h) + b∗(zh(w
h
n+1/2),wh

n+1/2,v
h)− (πhn+1/2,∇ · vh) +Re−1(∇wh

n+1/2,∇vh)

+ χ(wh
n+1/2 − zh(wh

n+1/2),vh) = (fn+1/2,v
h), ∀vh ∈ Xh (4.43)

(∇ ·wh
n+1, q

h) = 0, ∀qh ∈ Qh (4.44)

where zh(w
h
n+1/2) = Dhwh

n+1/2

h
.
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Notice that (qhn+1/2,∇ · vh) = 0 when vh ∈ Vh so that the problem of finding wh
n+1 ∈ Vh

satisfying

1

∆t
(wh

n+1 −wh
n,v

h) + b∗(zh(w
h
n+1/2),wh

n+1/2,v
h) +Re−1(∇wh

n+1/2,∇vh)

+ χ(wh
n+1/2 − zh(wh

n+1/2),vh) = (fn+1/2,v
h), ∀vh ∈ Vh (4.45)

is an equivalent formulation of Problem 4.3.1.

Lemma 4.3.2. If u,v,w ∈ X,

b∗(u,v,w) ≤ C
√
||u||||∇u||||∇v||||∇w||,

b∗(u,v,w) ≤ C||∇u||||∇v||
√
||w||||∇w||. (4.46)

Moreover, if v ∈ H2(Ω), then

b∗(u,v,w) ≤ C||u||||v||2||∇w||, b∗(u,v,w) ≤ C||∇u||||v||2||w||. (4.47)

Proof. The following estimates are derived e.g. in [61].

The discrete Gronwall inequality is essential to the analysis in Section 4.5.

Lemma 4.3.3. Let D ≥ 0 and κn, An, Bn, Cn ≥ 0 for any integer n ≥ 0 and satisfy

AN + ∆t
N∑
n=0

Bn ≤ ∆t
N∑
n=0

κnAn + ∆t
N∑
n=0

Cn +D, ∀N ≥ 0.

Suppose that for all n, ∆tκn < 1 and set gn = (1−∆tκn)−1. Then,

AN + ∆t
N∑
n=0

Bn ≤ exp

(
∆t

N∑
n=0

gnκn

)[
∆t

N∑
n=0

Cn +D

]
, ∀N ≥ 0.

For any n = 0, 1, . . . ,M − 1,

||θn+1 − θ(tn)

∆t
||2 ≤ C∆t−1

∫ tn+1

tn

||θt(t)||2dt (4.48)

||θn+1/2 − θ(tn+1/2)||2k ≤ C∆t3
∫ tn+1

tn

||θtt(t)||2kdt (4.49)

|| 1

∆t
(θn+1 − θn)− θt(tn+1/2)||2 ≤ C∆t3

∫ tn+1

tn

||θttt(t)||2dt. (4.50)

where θ ∈ H1(L2), θ ∈ H2(Hk), and θ ∈ H3(L2) is required respectively. Each estimate

(4.48), (4.49), (4.50) is a result of a Taylor expansion with integral remainder.
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4.4 EXISTENCE THEORY

We now proceed to establish well-posedness of Problem 4.3.1. Existence at each time step

is established via Leray-Schauder’s fixed point theorem.

Lemma 4.4.1. Let

a(θh,vh) =
∆t

2Re

(
∇θh,∇vh

)
+
χ∆t

2

(
θh − zh(θh),vh

)
ly(v

h) = (y,vh).

for any y ∈ X∗ and θh, vh ∈ Vh. Suppose that Dh satisfies Assumption 4.2.5. Then

a(·, ·) : Vh × Vh → R is a continuous and coercive bilinear form and ly(·) : Vh → R is a

linear, continuous functional.

Proof. Linearity for ly(·) is obvious, and continuity follows from an application of Hölder’s

inequality. Continuity for a(·, ·) also follows from Hölder’s inequality and Assumption 4.2.5.

Coercivity is proven by application of (4.19).

Lemma 4.4.2. Let T : X∗ → Vh be such that, for any y ∈ X∗, θh := T (y) solves

a
(
θh,vh

)
= ly(v

h), ∀vh ∈ Vh.

Then T is a well-defined, linear, bounded operator.

Proof. Linearity is clear. The results of Lemma 4.4.1, and the Lax-Milgram theorem prove

the rest.

Lemma 4.4.3. Fix n = 0, 1, . . . ,M − 1. Let wh
n be a solution of Problem 4.3.1 and let

N : Vh → X∗ satisfy, for any θh ∈ Vh,

(N(θh),vh) = −(θh − 2wh
n,v

h)− ∆t

4
b∗(zh(θ

h),θh,vh)

+ ∆t(fn+1/2,v
h) =: c(θh,vh), ∀vh ∈ Vh

Then N(θh) is well-defined, bounded, and continuous.
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Proof. For each θh ∈ Vh, the map vh ∈ Vh 7→ c(θh,vh) is a bounded, linear functional (apply

Hölder’s inequality and (4.46)). Since Vh is a Hilbert space, we conclude that N(θh) is well

defined, by the Riesz-Representation theorem. Moreover, N(θh) is bounded on Vh and since

the underlying function space is finite dimensional, continuity follows.

Lemma 4.4.4. Fix n ∈ N. Let F : Vh → Vh be defined such that F (θh) = (T ◦ N)(θh).

Then, F is a compact operator.

Proof. N(·) is a compact operator (continuous on a finite dimensional function space). Thus,

F is a continuous composition of a compact operator and hence compact itself.

Theorem 4.4.5 (Well-posedness). Fix n = 0, 1, 2, . . . ,M − 1 <∞. There exists (wh
n, π

h
n) ∈

Xh ×Qh satisfying Problem 4.3.1. Moreover,

||wh
m||2 +

1

2Re
∆t

m−1∑
n=0

||∇wh
n+1/2||2 + χ∆t

m−1∑
n=0

||wh
n+1/2||2?h ≤ ||wh

0 ||2 +
∆tRe

2

m−1∑
n=0

||fn+1/2||2−1

(4.51)

for all integers 1 ≤ m ≤M , independent of ∆t > 0.

Proof. First, assume that (wh
n+1, q

h
n+1) is a solution to (4.43), (4.44). Set vh = wh

n+1/2 in

(4.43) so that skew-symmetry of the nonlinear term provides

1

2∆t

(
||wh

n+1||2 − ||wh
n||2
)

+Re−1||∇wh
n+1/2||2

+ χ(wh
n+1/2 − zh(wh

n+1/2),wh
n+1/2) = (fn+1/2,w

h
n+1/2) (4.52)

Duality of H−1(Ω), H1
0 (Ω) with Young’s inequality implies

(fn+1/2,w
h
n+1/2) ≤ Re

2
||fn+1/2||2−1 +

Re

2
||∇wh

n+1/2||2 (4.53)

From (4.19), we have

||wh
n+1/2||2?h = (wh

n+1/2 − zh(wh
n+1/2),wh

n+1/2) ≥ 0 (4.54)

Then applying (4.53), (4.54) to (4.52), combining like-terms and simplifying provides

1

2∆t

(
||wh

n+1||2 − ||wh
n||2
)

+
Re

2
||∇wh

n+1/2||2 + χ||wh
n+1/2||2?h ≤

Re

2
||fn+1/2||2−1
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Summing from n = 0 to m− 1, we get the desired bound.

Next, let Wh
n = wh

n+1 + wh
n. Showing that Wh

n = F (Wh
n) has a fixed point will ensure

existence of solutions to (4.45). Indeed, if we can show that Wh
0 = F (Wh

0), then since wh
0 is

given initial data, existence of wh
1 is immediate. Induction can be applied to prove existence

of (wh
n)1≤n≤M . To this end, since F is compact, it is enough to show (via Leray Schauder)

that any solution Wh
n,λ of the fixed point problem Wh

n,λ = λF (Wh
n,λ) is uniformly bounded

with respect to 0 ≤ λ ≤ 1. Hence, we consider

a(Wh
n,λ,v

h) = λ(N(Wh
n,λ),v

h).

Test with vh = Wh
n,λ, use skew-symmetry of the trilinear form and properties of Dh

given in Assumption 4.2.5 and (4.19) to get

λ||Wh
n,λ||2 +

∆t

2Re
||∇Wh

n,λ||2 +
χ∆t

2
||Wh

n,λ||2?h ≤ 2λ(wh
n,W

h
n,λ) + λ∆t(fn+1/2,W

h
n,λ) (4.55)

Duality of H−1(Ω), H1
0 (Ω) followed by Young’s inequality implies

λ∆t(fn+1/2,W
h
n,λ) ≤ ∆tRe||fn+1/2||2−1 +

∆t

4Re
||∇Wh

n,λ||2. (4.56)

Since wh
n ∈ L2(Ω) from the a priori estimate (4.51), we apply Hölder’s and Young’s inequal-

ities to get

2λ(wh
n,W

h
n,λ) ≤ 2||wh

n||2 +
λ

2
||Wh

n,λ||2 (4.57)

Applying estimates (4.56), (4.57) to (4.55) we get that ||∇Wh
n,λ|| ≤ C < ∞ independent

of λ. By the Leray-Schauder fixed point theorem, given wh
n, there exists a solution to the

fixed point theorem Wh
n = F (Wh

n). By the induction argument noted above, there exists a

solution wh
n for each n = 0, 1, 2, . . . ,M − 1 to (4.45).

Existence of an associated discrete pressure follows by a classical argument, since the

pair (Xh, Qh) satisfies the discrete inf-sup condition (4.39).
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4.5 CONVERGENCE THEORY

For the convergence estimate, we state the main results in Theorem 4.5.1.

Theorem 4.5.1 (Convergence estimate). Suppose that (u, p) are strong solutions to (4.5),

(4.6), (4.7) and that G, Gh, D, Dh satisfy Assumption 4.2.5. Let E∗ = E(1) +E(2) given in

(4.81) and (4.87), respectively. Suppose further that u ∈ C0([0, T ];H2), p ∈ C0([0, T ];L2),

and f ∈ C0([0, T ];H−1). If

CRe∆t||un||22 < 1, ∀n = 0, 1, . . . ,M (4.58)

then,

||uM −wh
M ||2 +Re−1∆t

M−1∑
n=0

||∇(un+1/2 −wh
n+1/2)||2 + χ∆t

M−1∑
n=0

||un+1/2 −wh
n+1/2||2?h

≤ C(||u0 −wh
0 ||2 + E∗ + ||p||2L2(L2) + (||u||2L∞(H1) + 1)||u||2L2(H1)

+ ||u||2L∞(L2) + ||u||2L2(L2)) (4.59)

Corollary 4.5.2 (Convergence estimate). Under the assumptions of Theorem 4.5.1, suppose

further that (u, p) satisfy the assumptions for (4.40) for some k ≥ 1 and s ≥ 0, and utt ∈

L2(H1), uttt ∈ L2(H−1), ptt ∈ L2(L2), ftt ∈ L2(H−1). Then,

{||uM −wh
M ||2 +Re−1∆t

M−1∑
n=0

||∇(un+1/2 −wh
n+1/2)||2}1/2

≤ C(Re, χ, C∗, d1)(hk + hs+1 + ∆t2 + c1(δ, α) + c2(h, δ, α)). (4.60)
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Proof of Theorem 4.5.1, Corollary 4.5.2

Recall that zh(v) = Dhvh. The consistency error for the time-discretization and decon-

volution, time-relaxation modeling error are given by, for n = 0, 1, . . .,

τ (1)
n (u, p; vh) := (

un+1 − un
∆t

− ut(tn+1/2),vh) +Re−1(∇
(
un+1/2 − u(tn+1/2)

)
,∇vh)

+ b∗(un+1/2,un+1/2,v
h)− b∗(u(tn+1/2),u(tn+1/2),vh)

− (pn+1/2 − p(tn+1/2),∇ · vh)− (fn+1/2 − f(tn+1/2),vh) (4.61)

τ (2)
n (u, p; vh) := −b∗(un+1/2 − zh(un+1/2),un+1/2,v

h) + χ(un+1/2 − zh(un+1/2),vh) (4.62)

where vh ∈ Xh. Write τn := τ
(1)
n +τ

(2)
n . Using (4.61), (4.62), rewrite (4.8) in a form conducive

to analyzing the error between the continuous and discrete models:

(
un+1 − un

∆t
,vh) + b∗(zh(un+1/2),un+1/2,v

h) +Re−1(∇un+1/2,∇vh)

− (pn+1/2,∇ · vh) + χ(un+1/2 − zh(un+1/2),vh) = (fn+1/2,v
h) + τn(u, p; vh) (4.63)

Decompose the velocity error

en = wh
n − un = φhn − ηn, φhn = wh

n −Uh
n, ηn = un −Uh

n,

where Uh
n ∈ Vh. Fix q̃

n+1/2
h ∈ Qh. Note that (q̃

n+1/2
h ,∇ · vh) = 0 for any vh ∈ Vh. Subtract

(4.63) from (4.45) and test with vh = φhn+1/2 to get the error equation

1

2∆t

(
||φhn+1||2 − ||φhn||2

)
+Re−1||∇φhn+1/2||2 + χ(φhn+1/2 − zh(φhn+1/2),φhn+1/2)

= −(q̃
n+1/2
h − pn+1/2,∇ · φhn+1/2) +

1

∆t
(ηn+1 − ηn,φhn+1/2)− b∗(zh(φhn+1/2),un+1/2,φ

h
n+1/2)

+ b∗(zh(ηn+1/2),un+1/2,φ
h
n+1/2) + b∗(zh(w

h
n+1/2),ηn+1/2,φ

h
n+1/2)

+Re−1(∇ηn+1/2,∇φhn+1/2) + χ(ηn+1/2 − zh(ηn+1/2),φhn+1/2)− τn(u, p;φhn+1/2) (4.64)
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Let Uh
n = ṽh be the L2-projection of u(·, tn) so that (ηn+1 − ηn,φhn+1/2) = 0. Using (4.19),

the error equation (4.64) simplifies to

1

2∆t

(
||φhn+1||2 − ||φhn||2

)
+Re−1||∇φhn+1/2||2 + χ||φhn+1/2||2?h

= −(q̃
n+1/2
h − pn+1/2,∇ · φhn+1/2)− b∗(zh(φhn+1/2),un+1/2,φ

h
n+1/2)

+ b∗(zh(ηn+1/2),un+1/2,φ
h
n+1/2) + b∗(zh(w

h
n+1/2),ηn+1/2,φ

h
n+1/2)

+Re−1(∇ηn+1/2,∇φhn+1/2) + χ(ηn+1/2 − zh(ηn+1/2),φhn+1/2)− τn(u, p;φhn+1/2) (4.65)

Let ε > 0 be an arbitrary (Young’s inequality) constant to be fixed after all majorizations to

allow absorption of appropriate terms into the left-hand-side of (4.65). We apply standard

estimates and those of Lemma 4.3.2 without explicit reference in the following.

First, u ∈ H1(Ω) and p ∈ L2(Ω) implies

Re−1(∇ηn+1/2,∇φhn+1/2) ≤ CRe−1||∇ηn+1/2||2 +
1

εRe
||∇φhn+1/2||2 (4.66)

(pn+1/2 − q̃n+1/2
h ,∇ · φhn+1/2) ≤ CRe||pn+1/2 − q̃n+1/2

h ||2 +
1

εRe
||∇φhn+1/2||2. (4.67)

Also, from Lemma 4.2.8, ||I −DhGh|| ≤ 1, so that

χ(ηn+1/2 − zh(ηn+1/2),φhn+1/2) ≤ Cχ2Re||ηn+1/2||2 +
1

εRe
||∇φhn+1/2||. (4.68)

We bound the convective terms next. First, u ∈ H2(Ω) implies

b∗(zh(φ
h
n+1/2),un+1/2,φhn+1/2) ≤ CRe||zh(φhn+1/2)||2||un+1/2||22 +

1

εRe
||∇φhn+1/2||2 (4.69)

and u ∈ L∞(H1(Ω)) implies

b∗(zh(ηn+1/2),un+1/2,φhn+1/2)

≤ CRe||u||2L∞(H1)||∇zh(ηn+1/2)||2 +
1

εRe
||∇φhn+1/2||2. (4.70)

Next, rewrite the remaining nonlinear term

b∗(zh(w
h
n+1/2),ηn+1/2,φ

h
n+1/2) = b∗(zh(un+1/2),ηn+1/2,φ

h
n+1/2)

− b∗(zh(ηn+1/2),ηn+1/2,φ
h
n+1/2) + b∗(zh(φ

h
n+1/2),ηn+1/2,φ

h
n+1/2).
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Once again, u ∈ L∞(H1(Ω)) implies

b∗(zh(un+1/2),ηn+1/2,φ
h
n+1/2) ≤ CRe||zh(u)||2L∞(H1)||∇ηn+1/2||2 +

1

εRe
||∇φhn+1/2||2 (4.71)

and similarly for b∗(zh(ηn+1/2),ηn+1/2,φ
h
n+1/2). Lastly, Lemma 4.3.2 and inverse inequality

(4.41) give

b∗(zh(φ
h
n+1/2),ηn+1/2,φ

h
n+1/2)

≤ C
√
||zh(φhn+1/2)||||∇zh(φhn+1/2)||||∇ηn+1/2||||∇φhn+1/2||

≤ CReh−1||zh(φhn+1/2)||2||∇ηn+1/2||2 +
1

εRe
||∇φhn+1/2||2. (4.72)

By noting that Assumption 4.2.5 provides ||zh(v)|| ≤ ||v|| and ||∇zh(v)|| ≤ d1||∇v||, we

have

b∗(zh(φ
h
n+1/2),un+1/2,φ

h
n+1/2)

− b∗(zh(ηn+1/2),un+1/2,φ
h
n+1/2)− b∗(zh(wh

n+1/2),ηn+1/2,φ
h
n+1/2)

≤ 5

εRe
||∇φhn+1/2||2 + CRe(||un+1/2||22 + h−1||∇ηn+1/2||2)||φhn+1/2||2

+ Cd2
1Re(||u||2L∞(H1) + ||∇ηn+1/2||2)||∇ηn+1/2||2. (4.73)

Bounding the time-consistency error remains. First, ut ∈ H−1(Ω) implies

(
un+1 − un

∆t
− ut(tn+1/2),φhn+1/2) ≤ CRe||un+1 − un

∆t
− ut(tn+1/2)||2−1 +

1

εRe
||∇φhn+1/2||2

(4.74)

and u ∈ H1(Ω) implies

Re−1(∇(un+1/2 − u(tn+1/2)),∇φhn+1/2)

≤ CRe−1||∇(un+1/2 − u(tn+1/2))||2 +
1

εRe
||∇φhn+1/2||2. (4.75)

Similarly, p ∈ L2(Ω) implies

(pn+1/2 − p(tn+1/2),∇φhn+1/2)

≤ CRe||pn+1/2 − p(tn+1/2)||2 +
1

εRe
||∇φhn+1/2||2 (4.76)
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and f ∈ H−1(Ω) implies

(f(tn+1/2)− fn+1/2,φ
h
n+1/2)

≤ CRe||f(tn+1/2)− fn+1/2||2−1 +
1

εRe
||∇φhn+1/2||2. (4.77)

We decompose the nonlinear terms so that

b∗(un+1/2,un+1/2,φ
h
n+1/2)− b∗(u(tn+1/2),u(tn+1/2),φhn+1/2)

= b∗(un+1/2 − u(tn+1/2),un+1/2,φ
h
n+1/2) + b∗(u(tn+1/2),un+1/2 − u(tn+1/2),φhn+1/2).

Then, u ∈ L∞(H1(Ω)) implies

b∗(un+1/2 − u(tn+1/2),un+1/2,φ
h
n+1/2)

≤ CRe||u||2L∞(H1)||∇(un+1/2 − u(tn+1/2))||2 +
1

εRe
||∇φhn+1/2||2 (4.78)

and similarly for b∗(u(tn+1/2,un+1/2 − u(tn+1/2),φhn+1/2). Then we have, for some C > 0,

τ (1)
n (u, p;φhn+1/2) ≤ 6

εRe
||∇φhn+1/2||2 + CReE(1)

n (4.79)

where

E(1)
n := ||un+1 − un

∆t
− ut(tn+1/2)||2−1

+ (Re−2 + ||u||2L∞(H1))||∇(un+1/2 − u(tn+1/2))||2

+ ||pn+1/2 − p(tn+1/2)||2 + ||f(tn+1/2)− fn+1/2||2−1 (4.80)

Moreover, ∆t
∑M−1

n=0 E
(1)
n ≤ CE(1) where E(1) is given by

E(1) :=

∫ T

0

∥∥∥∥∫ 1

0

(
ut(·, t+ s∆t)− ut(·, t+

∆t

2
)

)
ds

∥∥∥∥2

−1

dt

+

∫ T

0

||∇(
1

2
(u(·, t+ ∆t) + u(·, t))− u(·, t+

∆t

2
))||2dt

+

∫ T

0

||1
2

(p(·, t+ ∆t) + p(·, t))− p(·, t+
∆t

2
)||2dt

+

∫ T

0

||1
2

(f(·, t+ ∆t) + f(·, t))− f(·, t+
∆t

2
)||2−1dt. (4.81)
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Notice that by introducing ±z(un+1/2) we can write

τ (2)
n (u, p; vh)

= −b∗(un+1/2 − z(un+1/2),un+1/2,φ
h
n+1/2)− b∗

(
(z(un+1/2)− zh(un+1/2)),un+1/2,φ

h
n+1/2

)
+ χ(un+1/2 − z(un+1/2),φhn+1/2) + χ(z(un+1/2)− zh(un+1/2),φhn+1/2) (4.82)

Then,

χ(un+1/2 − z(un+1/2),φhn+1/2) + χ(z(un+1/2)− zh(un+1/2),φhn+1/2)

≤ Cχ2Re||un+1/2 − z(un+1/2)||2 + Cχ2Re||z(un+1/2)− zh(un+1/2)||2 +
2

εRe
||∇φhn+1/2||2

(4.83)

and u ∈ H2(Ω) implies

− b∗(un+1/2 − z(un+1/2),un+1/2,φ
h
n+1/2)− b∗(z(un+1/2)− zh(un+1/2),un+1/2,φ

h
n+1/2)

≤ CRe||un+1/2||22
(
||un+1/2 − z(un+1/2)||2 + ||z(un+1/2)− zh(un+1/2||2

)
+

2

εRe
||∇φhn+1/2||2 (4.84)

These estimates combine to prove

τ (2)
n (u, p;φhn+1/2) ≤ 4

εRe
||∇φhn+1/2||2 + CReE(2)

n . (4.85)

where

E(2)
n := (χ2 + ||un+1/2||22)

[
||un+1/2 − z(un+1/2)||2 + ||z(un+1/2)− zh(un+1/2)||2

]
. (4.86)

Moreover, ∆t
∑M−1

n=0 E
(2)
n ≤ CE(2) where E(2) is given by

E(2) :=

∫ T

0

(χ2 + ||u(·, t)||22)
[
||u(·, t)−Du(·, t)||2 + ||Du(·, t)−Dhu(·, t)

h
||2
]
dt. (4.87)

Apply estimates from (4.66), (4.67), (4.68), (4.73), (4.79), and (4.85) to (4.65). Set ε = 36

and absorb all terms including ||∇φhn+1/2|| from the right into left-hand-side of (4.65). Sum
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the resulting inequality on both sides from n = 0 to n = M − 1. Apply estimates (4.80),

(4.86). The result is

||φhM ||2 +Re−1∆t
M−1∑
n=0

||∇φhn+1/2||2 + χ∆t
M−1∑
n=0

||φhn+1/2||2?h

≤ ||φh0 ||2 + CRe∆t
M−1∑
n=0

(
E(1)
n + E(2)

n

)
+ CRe∆t

M−1∑
n=0

||pn+1/2 − q̃hn+1/2||2

+ CRed2
1∆t

M−1∑
n=0

(||u||2L∞(H1) + ||∇ηn+1/2||2)||∇ηn+1/2||2

+ CRe∆t
M−1∑
n=0

(||un+1/2||22 + h−1||∇ηn+1/2||2)||φhn+1/2||2

+ Cχ2Re∆t
M−1∑
n=0

||ηn+1/2||2 + CRe−1∆t
M−1∑
n=0

||∇ηn+1/2||2. (4.88)

The approximation (4.40) and u ∈ C0([0, T ], H1) ∩ L2(H2) imply

sup
n
||∇ηn|| ≤ C||u||L∞(H1) <∞,

∆t

h

N−1∑
n=0

||∇ηn||2 ≤ C||u||2L2(H2) <∞.

Applying these results, (4.88) becomes

||φhM ||2 +Re−1∆t
M−1∑
n=0

||∇φhn+1/2||2 + χ∆t
M−1∑
n=0

||φhn+1/2||2?h

≤ ||φh0 ||2 + CRe∆t
M−1∑
n=0

(
E(1)
n + E(2)

n

)
+ CRe∆t

M−1∑
n=0

||pn+1/2 − q̃hn+1/2||2

+ CRe∆t
M−1∑
n=0

(
((d2

1 + 1)||u||2L∞(H1) +Re−2)||∇ηn+1/2||2 + ||un+1/2||22||φhn+1/2||2
)

+ Cχ2Re∆t
M−1∑
n=0

||ηn+1/2||2. (4.89)
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Requiring u ∈ C0([0, T ];H2) allows us to restrict the time-step by (4.58) so that the discrete

Gronwall Lemma 4.3.3 applies to (4.89)

||φhM ||2 +Re−1∆t
M−1∑
n=0

||∇φhn+1/2||2 + χ∆t
M−1∑
n=0

||φhn+1/2||2?h

≤ C∗||φh0 ||2 + C∗Re∆t
M−1∑
n=0

(
E(1)
n + E(2)

n

)
+ C∗Re∆t

M−1∑
n=0

(
||pn+1/2 − q̃hn+1/2||2 + ((d2

1 + 1)||u||2L∞(H1) +Re−2)||∇ηn+1/2||2
)

+ C∗χ
2Re∆t

M−1∑
n=0

||ηn+1/2||2. (4.90)

where

C∗ = C exp

(
Re∆t

M−1∑
n=0

gn||un||22

)
, gn = (1− CRe∆t||un||22)−1 (4.91)

Lastly, the triangle inequality applied to (4.90) implies

||uM −wh
M ||2 +Re−1∆t

M−1∑
n=0

||∇(un+1/2 −wh
n+1/2)||2 + χ∆t

M−1∑
n=0

||un+1/2 −wh
n+1/2||2?h

≤ C∗||φh0 ||2 + C∗Re∆t
M−1∑
n=0

(
E(1)
n + E(2)

n

)
+ C∗Re∆t

M−1∑
n=0

(
||pn+1/2 − q̃hn+1/2||2 + ((d2

1 + 1)||u||2L∞(H1) +Re−2)||∇ηn+1/2||2
)

+ C∗χ
2Re∆t

M−1∑
n=0

||ηn+1/2||2

+ ||ηM ||2 +Re−1∆t
M−1∑
n=0

||∇ηn+1/2||2 + χ∆t
M−1∑
n=0

||ηn+1/2||2?h. (4.92)

Apply estimate (4.48) to (4.92). Then, after simplification, (4.92) results in (4.59) which

proves Theorem 4.5.1.

Lastly, to prove Corollary 4.5.2, apply estimates (4.48), (4.49), (4.50) and (4.40) to the

preliminary estimate (4.92).
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4.6 APPLICATIONS

4.6.1 Iterated (modified) Tikhonov-Lavrentiev regularization

We now show that Dα,J , Dh
α,J from Definitions 4.2.13, 4.2.14 with G = A−1 satisfies Assump-

tion 4.2.5. Proposition 4.2.9 implies that it is enough to show that Dα,0 satisfies Assumption

4.2.5. In addition, we will provide sharpened estimates for d1,j, c1,j, and c2,j. The key is that

A−1 > 0 is a continuous function of the Laplace operator −∆ ≥ 0 and hence they commute

(on X). Moreover, Dα,0 > 0 is a continuous function of A−1 so that Dα,0 commutes with

A−1 and ∆ (on X).

Next, we characterize the spectrum of Dα,0, Dh
α,0.

Lemma 4.6.1. Fix 0 < α ≤ 1. Define f : (0, 1]→ R and g : (0, 1]→ R by

f(x) :=
1

(1− α)x+ α
, g(x) :=

x

(1− α)x+ α

The maps f , g are continuous such that f((0, 1]) = [1, α−1) and g((0, 1]) = (0, 1].

Proof. The functions f , g are clearly continuous with f decreasing and g increasing on (0, 1].

Hence, the range of f is [1, α−1) and range of g is (0, 1].

The next result shows that Dα,0, Dh
α,0 satisfy part of Assumption 4.2.5.

Proposition 4.6.2. Dα,0, Dh
α,0 (on X, Xh respectively) are linear, bounded, spd, and com-

mute with G, Gh (respectively). Moreover,

||Dα,0A
−1|| ≤ 1, ||∇(Dα,0A

−1u)|| ≤ ||∇u|| ∀ u ∈ X

||Dh
α,0A

−1
h || ≤ 1, ||∇(Dh

α,0A
−1
h uh)|| ≤ ||∇uh|| ∀ uh ∈ Xh

(4.93)

Hence d1 = 1 in Assumptions 4.2.4, 4.2.5.

92



Proof. It is immediately clear that Dα,0, Dh
α,0 are linear. As a consequence, since A−1 > 0

with spectrum in (0, 1], then Dα,0 = f(A−1) with spectrum contained in [1, α−1) so that

D > 0. Therefore, Dα,0A
−1 = g(A−1) with spectrum contained in (0, 1]. A similar argument

shows that A−1
h has spectrum in (0, 1], Dh

α,0 has spectrum in [1, α−1), and Dh
α,0A

−1
h has

spectrum in (0, 1]. Thus Dα,0 > 0, Dh
α,0 > 0 and ||Dα,0A

−1|| ≤ 1 and ||Dh
α,0A

−1
h || ≤ 1.

Therefore, Dα,0 and Dh
α,0 are bounded and commute with G = A−1, Gh = A−1

h respectively

as discussed above.

The second set of inequalities on each line can be proved with an appropriate choice of

v and vh in Definitions 4.2.2 and 4.2.3. Starting with Definition 4.2.2, take φ = u and

choose v = ∆Dα,0A
−1u. Then integration by parts and the Cauchy-Schwartz inequality

give the result. The discrete form is proved using Definition4.2.3 and choosing φ = uh and

v = ∆Dh
α,0A

−1
h uh

It remains to provide estimates on c1, c2, and sharpened estimates for c1,j, c2,j. Indeed,

as a direct consequence of Propositions 4.6.3, 4.6.4, we have, for any j = 0, 1, . . . , J ,

c1,j = (αδ2)j+1||∆2j+2v||, ∀v ∈ H2j+2(Ω)

c2,j = C4j(αδ2h2k + h2k+2) max0≤n≤j ||Dα,nA
−1v||2k+1 ∀v ∈ Hk+1(Ω).

(4.94)

Proposition 4.6.3. Let j = 0, 1, . . . , J . Then

||v −Dα,jA
−1v|| ≤ (αδ2)j+1||v||2j+2, ∀v ∈ H2j+2(Ω). (4.95)

Proof. Using (4.3), we have

D−1
α,0(Dα,JA

−1v −Dα,J−1A
−1v) = A−1v − A−1Dα,J−1A

−1v. (4.96)

Subtracting (4.96) from the identity

D−1
α,0(v − v) = A−1v − A−1v
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gives us

D−1
α,0

(
(I −Dα,JA

−1)v − (I −Dα,J−1A
−1)v

)
= −A−1(I −Dα,J−1A

−1)v. (4.97)

Multiplying by Dα,0, rearranging, simplifying, and using A−I = −δ2∆ from Definition 4.2.2

gives us

(I −Dα,JA
−1)v =

[
−Dα,0A

−1(I −Dα,J−1A
−1) + (I −Dα,J−1A

−1)
]
v

= (I −Dα,J−1A
−1)(I −Dα,0A

−1)v

= (I −Dα,J−1A
−1)Dα,0A

−1(D−1
α,0A− I)v

= (I −Dα,J−1A
−1)Dα,0A

−1
(
(1− α)A−1 + αI)A− I

)
v

= (I −Dα,J−1A
−1)Dα,0A

−1α(A− I)v

= −αδ2∆Dα,0A
−1[(I −Dα,J−1A

−1)v].

Applying recursion, we obtain

(I −Dα,JA
−1)v = (−αδ2)J+1(Dα,0A

−1)J+1∆J+1v.

Thus, taking norms and applying ||Dα,0A
−1|| ≤ 1, we get (4.95).

Proposition 4.6.4. Let j = 0, 1, . . . , J . Then

||Dα,jA
−1w −Dh

α,jA
−1
h w||2

≤ C4j(αδ2h2k + h2k+2) max
0≤n≤j

||Dα,nA
−1w||2k+1, ∀w ∈ Hk+1(Ω). (4.98)
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Proof. Take v = vh in (4.37). For j = 1, . . . , J , let ej = Dαw − Dh
αw

h := ηj − φhj , where

ηj := ωj − ṽhj , and φhj := ωhj − ṽhj (ṽhj ∈ Xh is the L2-projection of ωj). Then subtract

(4.37) and (4.38) to get

αδ2
(
∇φhj ,∇vh

)
+
(
φhj ,v

h
)

= αδ2
(
∇ηj,∇vh

)
+
(
ηj,v

h
)

+ αδ2
(
∇ej−1,∇vh

)
. (4.99)

Take vh = φhj in (4.99) to get

αδ2||∇φhj ||2 + ||φhj ||2 = αδ2
(
∇ηj,∇φhj

)
+
(
ηj,φ

h
j

)
+ αδ2

(
∇ej−1,∇φhj

)
. (4.100)

Fix ε > 0. Apply Hölder’s and Young’s inequalities to (4.100) to get

αδ2||∇φhj ||2 + ||φhj ||2 ≤ αδ2||∇ηj||2 + ||ηj||2 + εαδ2||∇ej−1||2 +
1

ε
αδ2||∇φhj ||2. (4.101)

Taking ε = 1 and ε = 2 in (4.101) gives

||φhj ||2 ≤ αδ2||∇ηj||2 + ||ηj||2 + αδ2||∇ej−1||2. (4.102)

αδ2||∇φhj ||2 + 2||φhj ||2 ≤ 2αδ2||∇ηj||2 + 2||ηj||2 + 4αδ2||∇ej−1||2. (4.103)

The triangle inequality and estimate (4.102) give

||ej||2 ≤ 2 ||ηj||2 + αδ2||∇ηj||2 + αδ2||∇ej−1||2.

Backward induction and properties of the L2 projection then result in

||ej||2 ≤ αδ2(2 + 3

j∑
i=0

4i) max
0≤n≤j

inf
vh∈Xh

||∇(Dα,nA
−1w − vh)||2

+ 2(1 +

j∑
i=0

4i) max
0≤n≤j

inf
vh∈Xh

||Dα,nA
−1w − vh||2 (4.104)

and estimate (4.98) follows.

Corollary 4.6.5 (Convergence estimate). Under the assumptions of Corollary 4.5.2, suppose

further that, for some J = 0, 1, . . ., that G = A−1, Gh = A−1
h , D = Dα,J , Dh = Dh

α,J . If

∆2J+2u ∈ L2(Ω), then

||uM −wh
M ||2 +Re−1∆t

M−1∑
n=0

||∇(un+1/2 −wh
n+1/2)||2

≤ C∗Re(4
J(h2 + αδ2)h2k + h2k + h2s+2 + ∆t4 + (αδ2)2J+2). (4.105)

Proof. Apply estimates for c1,j, c2,j from (4.94), resulting from Propositions 4.6.3, 4.6.4.
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4.6.2 Numerical results

This section presents two numerical examples. The first is the calculation of a flow with an

exact solution to verify the convergence rates of the algorithm. The second examines the flow

of a fluid over a step with recirculation. FreeFEM++ [72] was used to run the simulations.

Example 4.6.6 (Taylor-Green vortex).

The convergence rates are tested against the Taylor-Green vortex problem [17,48,67,100].

We use a domain of Ω = [0, 1]× [0, 1] and take u = (u1, u2) where

u1(x, y, t) = − cos(nπx) sin(nπy)e−2n2π2t/τ

u2(x, y, t) = sin(nπx) cos(nπy)e−2n2π2t/τ

p(x, y, t) = −1

4
(cos(nπx) + cos(nπy))e−2n2π2t/τ .

The pair (u, p) is a solution the two-dimensional NSE when τ = Re and f = 0.

We used Crank-Nicolson discretization in time and P2-P1 elements in space according to

Problem 4.3.1. That is, we used continuous piecewise quadratic elements for the velocity and

continuous piecewise linear elements for the pressure. We chose the spatial discretization

elements and parameters n = 1, T = 0.5, χ = 0.1 and Re = 10, 000 to correspond to a

previous experiment in [67]. We chose h = 1
m

, dt = 1
4
h, δ = 4

√
h and α =

√
h where m is the

number of mesh divisions per side of [0, 1]. These were chosen so that 4.6.5 reduces to

||uM −wh
M ||+

[
Re−1∆t

M−1∑
n=0

||∇(un+1/2 −wh
n+1/2)||2

]1/2

≤ C(h2 + hJ+1). (4.106)

We summarize the results in Tables 6 and 7. Table 6 shows that not iterating the

deconvolution, corresponding to choosing J = 0 in Definition 4.2.13. This choice of α and δ

gives to convergence rates of ‖u−wh‖∞,0 and ‖∇(u−wh)‖2,0 to be O(h) as predicted. Table

7 shows that iterating the deconvolution once, corresponding to choosing J = 1 in Definition

4.2.13. This choice of α and δ gives convergence rates of ‖u−wh‖∞,0 and ‖∇(u−wh)‖2,0 to

be O(h2) as predicted.

Example 4.6.7 (Flow over a step).

96



Table 6: Error and convergence rates for Leray-deconvolution with J = 0 for the Taylor-

Green vortex with Re = 10,000, α =
√
h, and δ = 4

√
h. Note the convergence rate is

approaching 1 as predicted by (4.106).

m (=1/h) ‖u− wh‖∞,0 Rate ‖∇(u− wh)‖2,0 Rate

20 0.038975 1.651230

40 0.024334 0.680 1.468510 0.169

60 0.017751 0.778 1.159840 0.582

80 0.013854 0.862 0.935247 0.748

100 0.011255 0.931 0.774285 0.846

Table 7: Error and convergence rates for Leray-deconvolution with J = 1 for the Taylor-

Green vortex with Re = 10,000, α =
√
h, and δ = 4

√
h. Note the convergence rate is

approaching 2 as predicted by (4.106).

m (=1/h) ‖u− wh‖∞,0 Rate ‖∇(u− wh)‖2,0 Rate

20 0.023384 1.070400

40 0.009739 1.264 0.640360 0.741

60 0.004997 1.646 0.357779 1.436

80 0.002899 1.892 0.212560 1.810

100 0.001915 1.858 0.136724 1.977
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Our second example examines the shedding of eddies over a step [49, 67]. We use a

parabolic inflow and outflow condition of u2 = y(10 − y)/25 on the left (inflow) and right

(outflow) sides of a channel with dimensions 10 × 60. We also set the velocity u = 0 along

the top, bottom, and around the step. We discretized this with P2-P1 elements in space and

Crank-Nicolson in time. The parameters chosen for this experiment are the same as [67],

Re = 750, δ = 1.5, dt = 0.0025, α = 0.01 and χ = 0.01. The mesh satisfied the properties of

hmin = 0.110753, hmax = 1.50497, and had a total of 17688 degrees of freedom.

We calculated the velocity using Problem 4.3.1 with the deconvolution step using J = 0

and J = 1 steps in Definition 4.2.13. Recirculation regions form past the step, and for a

critical Reynolds number, the eddies detach from the step and move downstream [67]. We

expect to see the eddies detach more frequently for the J = 1 deconvolution compared to

J = 0 because the regularization term stabilizes the flow, but the J = 1 iteration step regains

accuracy. Figures 11, 12, and 13 for time levels of T = 10, T = 20, and T = 30 respectively

show that eddies form and separate more frequently for the J = 1 case.

4.7 CONCLUSION

It is infeasible to resolve all persistent and energetically significant scales down to the Kol-

mogorov microscale of O(Re−3/4) for turbulent flows in complex domains using direct nu-

merical simulations in a given time constraint. Regularization methods are used to find

approximations to the solution. The modification of iterated Tikhonov-Lavrentiev to the

modified iterated Tikhonov-Lavrentiev deconvolution in Definition 4.2.13 is a highly accu-

rate method of solving the deconvolution problem in the Leray-deconvolution model, with

errors u−Dα,0u = O((αδ2)J+1) when applied to the differential filter. We use this result to

show that under a regularity assumption, the error between the solutions to the NSE and to

the Leray deconvolution model with time relaxation using the modified iterated Tikhonov-

Lavrentiev deconvolution and discretized with Crank-Nicolson in time and finite elements in

space are O(hk(h+
√
αδ2) + hs+1 + ∆t2 + (αδ2)J+1).

We also examined two numerical examples using Problem 4.3.1 with the deconvolution in
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NSE − Iterated Tikhonov with J=0 at  T=10 and  Re=750
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NSE − Iterated Tikhonov with J=1 at  T=10 and  Re=750
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Figure 11: Leray-Tikhonov (J = 0) and Leray-iterated Tikhonov (J = 1) deconvolution

models for flow over a step. Note the slower eddy formation and separation in the J = 0

case when compared to the J = 1 case.
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NSE − Iterated Tikhonov with J=0 at  T=20 and  Re=750
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NSE − Iterated Tikhonov with J=1 at  T=20 and  Re=750
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Figure 12: Leray-Tikhonov (J = 0) and Leray-iterated Tikhonov (J = 1) deconvolution

models for flow over a step. Note the slower eddy formation and separation in the J = 0

case when compared to the J = 1 case.
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NSE − Iterated Tikhonov with J=0 at  T=30 and  Re=750
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NSE − Iterated Tikhonov with J=1 at  T=30 and  Re=750
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Figure 13: Leray-Tikhonov (J = 0) and Leray-iterated Tikhonov (J = 1) deconvolution

models for flow over a step. Note the slower eddy formation and separation in the J = 0

case when compared to the J = 1 case.
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Definition 4.2.13. The first one was the Taylor-Green vortex problem. We use this problem

because it has an exact analytic solution to the NSE. The regularization parameters α and

δ were chosen so that the convergence of the approximate solution to the error would be

O(hJ+1) for J = 0 and J = 1. The convergence rates calculated corresponded to those

predicted rates, that is O(h1) for J = 0 and O(h2) for J = 1.

The second experiment demonstrated the use of the Leray deconvolution method with

the modified iterated Tikhonov-Lavrentiev deconvolution for J = 0 and J = 1 to examine

the qualitative features of a fluid flow. The parameters were chosen so that the flow would

not be steady and would create eddies [67]. We saw shedding of eddies past a step for both

the J = 0 and J = 1 cases, however the case of J = 1 appeared to have less numerical

diffusion as evidenced by forming and shedding eddies more rapidly.
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5.0 APPLICATION OF TIKHONOV REGULARIZATION TO BRAIN

MAPPING

“We must make it our goal to find a method of solution of all problems... by means of a

single simple method.” (D’Alembert)

Slowing gait and difficulty walking are major and common problems of older adults;

they worsen with age, and they are associated with greater risk of disability, hospitalization

and death [55, 71, 81]. Efforts to understand the mechanisms underlying maintenance of

mobility in late life can have tremendous implications for cost savings and prevention of

disability. With 4 million people age 85 and older in the United States [52], the sheer

number of old adults experiencing disability and requiring care results in great personal,

societal and public health financial expenses [50, 68]. Slower gait is known to be associated

with smaller volume of the brain both cross sectionally [9, 35, 76, 77, 79, 80, 96, 110] and

longitudinally [5, 6, 9, 96, 101, 111]. Most neuroimaging studies of gait slowing in older age

have examined measures of overall brain atrophy, and few studies have quantified the spatial

distribution of gray matter atrophy in relationship with gait. Recent works indicate that

slower gait is associated with less gray matter in the prefrontal cortex and posterior parietal

lobule, as well as in the putamen and cerebellum [76, 77]. However, these initial findings

have not been replicated in other large cohorts of community dwelling older adults and have

mostly relied on least square regression models approaches.

The least square regression model does not entirely address the challenges of neuroimag-

ing analysis. Firstly, there is noise (experimental noise or observational error) of unknown

levels in both gait and neuroimaging data. In the presence of noise/observational errors

in the measurements the modeling problem could have no solution. Secondly, there is a
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high level of correlation between the brain regions measurements, thus the problem that

must be solved to produce the association sought between the neuroimaging data and the

gait data is ill-conditioned. This approximate co-linearity causes amplification of the noise

to produce significant errors in the solution [23]. Specifically, small perturbations or small

observational errors in the data of the walking speed data can lead to large changes in our

regression coefficients. The results of least squares regression are sensitive to scaling, selec-

tion, and normalization of variables for statistical interpretations. Thirdly, there are a large

number of potential predictors of slowing gait, including numerous brain regions and numer-

ous health-related measures. Even when applying a selected number of regions based on á

priori hypotheses, the number of variables would includes more than 30 regions of interest

for each hemisphere, which yields a total of over 60 comparisons. Analysis of neuroimaging

correlates of behavioral characteristics typically involve a very high number of comparisons

and require conservative methods to correct for false positive results, for example Bonferroni

or Sidak [91, 92]. However, the application of these conservative methods might also lead

to a high number of false negative results. Lastly, these problems will increase in scale,

as inevitably, a more precisely localized correlation of neuroimaging data with behavior is

sought.

This paper gives an algorithm that addresses the four limitations of noise, high correla-

tion, large number of predictors and scalability. The algorithm is adapted from a combina-

tion of iterated Tikhonov regularization with the L-curve method for optimal choice of the

regularization parameters.

Definition 5.0.1 (Model problem). Assume that there is a linear relationship between the

brain measurements (e.g. brain volume, cellular integrity, connectivity and blood flow) and

the gait measurements (e.g. step width, step length, double support time, stance time and

step time).

For m participants, we define the ith row of A ∈ Rm×n to be the brain measurements

for a person i, the ith row of b ∈ Rm×k to be the gait measurements of person i, and let

x ∈ Rn×k be the correlation coefficients between the brain measurements and the gait mea-

surements. The modeling problem is to determine the correlation coefficients x between the
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brain measurements and gait measurements such that

Ax = b. (5.1)

If there is noise (e.g. inevitable errors in data collection) in the right hand side data b,

and the noise is not in the Range(A), then the modeling problem as stated in Definition 5.0.1

would have no solution. In that case, we seek an approximate solution. Even if a solution

does exist, if A is severely ill-conditioned, then we show in Section 5.2 that a small amount

of noise (10%) added to the right hand side data b leads to a large error (9,324,000%) in the

least squares calculated solution.

To calculate an approximate solution, we first develop the Brain-Gait Correlator, a self-

adaptive ”black box” correlation algorithm for simultaneous correlations between all regions

of interest (ROIs) and time to walk (Section 5.1). In Section 5.2, we validate the correlation

algorithm with two problems. The first is a problem with real brain volume measurements

and a synthetic walking speed (created from a hypothesized correlation), and the second is

a synthetic problem to determine how the algorithm handles noisy measurement. Lastly, in

Section 5.3, we apply the Brain-Gait Correlator to real brain volume measurement and real

walking speeds using data obtained from two different cohorts of older adults.

Data were obtained from participants of two ongoing population-based, longitudinal

studies, the Cardiovascular Health Study (CHS) and the Health Aging Body Composition

Study (Healthy Brain Project). The CHS is a study of coronary heart disease and stroke

risk in older adults. Details about the study design of the original cohort are published

elsewhere [24]. Briefly, 5888 community-dwelling older adults were identified between 1987

and 1993 from Medicare eligibility lists in four clinical centers (Forsyth County, NC, Sacra-

mento County, CA, Washington County, MD and Pittsburgh, PA) and were recruited if they

were age 65 or older at time of recruitment, non-institutionalized, not wheelchair bound or

undergoing active cancer treatment, able to give informed consent, and expected to remain

in the area for 3 years. These 5888 participants have had annual clinic examinations through

1998-99, including information for all hospitalizations, a review of medical records, and se-

lected laboratory and clinical evaluations. Brain MRIs were acquired in 523 participants

in Pittsburgh in 1997-99 [65]. Compared to the parent population who had a brain MRI,
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these participants were younger, more likely to have more years of education, and with lower

prevalence of cardiovascular diseases and cerebrovascular findings [77, 79]. In 2003-04, a

random sample of 327 brain MRIs from the 523 participants were re-read [76–78, 80]. No

significant difference was observed between the 327 and the 196 participants with regard to

demographics or health related factors.

The Healthy Brain Project began in 1997-1998 as a longitudinal, observational cohort

study of 3,075 well-functioning older white and black men and women, from Pittsburgh, PA

and Memphis, TN [93]. Participants were enrolled if they were 70-79 years old and reported

no difficulty walking a quarter of a mile (400 m), climbing 10 steps, or performing activities

of daily living; were free of life-threatening cancers with no active treatment within the prior

3 years; and had planned to remain within the study area for at least 3 years. In 2006-2007,

314 Healthy Brain Project participants from the Pittsburgh site who were interested and

eligible for a brain 3T MRI and who were able to walk 20 meters, received a brain MRI

in addition to the personal Healthy Brain Project assessments. Both studies have been

approved by the institutional review boards of the University of Pittsburgh.

The participants of this study were all able to walk. Gait speed was assessed by measuring

the time to walk at usual pace on a 15-foot course (for the CHS) and on a 20 meter course

(for the Healthy Brain Project) at usual pace after starting from a standstill position [99].

Brain MRI assessments included volumetric measures of gray matter of individual re-

gions and of total brain for both the CHS and the Healthy Brain Project MRIs. The brain

MRI protocol for the CHS carried out in 1997-99 has been described elsewhere [114]. Briefly,

sagittal T1-weighted localizer sequences and axial spin-echo spin-density-weighted, spin-echo

T2-weighted and T1-weighted images were acquired. All MRI data were interpreted at a

central MRI Reading Center using a standardized protocol [15,114]. The brain MRI protocol

for the Healthy Brain Project was performed on a 3T Siemens Tim Trio MR scanner and

a Siemens 12-channel head coil at the MR Research Center of the University of Pittsburgh.

Magnetization-prepared rapid gradient echo (MPRAGE) T1-weighted images were acquired

in the axial plane: TR=2300 ms; TE=3.43 ms; TI=900 ms; Flip angle= 9 deg; Slice Thick-

ness= 1mm; FOV= 256×224 mm; voxel size= 1mm×1mm; matrix size= 256×224; and

number of slices=176. A radiologist checked the MR images used in this study and excluded
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any unexpected findings from the study.

Voxel counts of the gray matter were obtained for individual regions of interest and for the

whole brain using a procedure previously described [78, 105, 113, 115]. After skull and scalp

stripping [94], and after segmentation of gray matter, white matter and cerebrospinal fluid,

the brain atlas and the individual subject brain are aligned and intensity normalization is

done on each subjects structural image (SPGR for the CHS and MPRAGE for the Healthy

Brain Project images) as well as on the template colin27, to give each subject the same

orientation and image intensity distribution as the template and to improve the registration

accuracy. For the 3Tesla images, the segmentation was done using the FAST - FMRIB’s

Automated Segmentation Tool [115]. The registration procedure uses a fully deformable

automatic algorithm [102] which does not warp or stretch the individual brain and thus

minimizes measurement inaccuracies [113]. Volumes were converted from number of voxels

to cubic centimeters.

The regions of interest are gray matter volumes obtained for each hemisphere for the

regions that are known to be associated with mobility control. The regions of interest were

previously drawn on the MNI colin27 template brain according to the AAL neuroanatomical

atlas [105, 112]. We examined a total of 32 ROIs (Figure 14). In addition to motor regions

(primary motor cortex, sensorimotor cortex, supplementary motor cortex, basal ganglia and

cerebellum), we also measured gray matter volume of associative cortices important for

visuospatial attention and to relate perception of self with surrounding environment and

with intended actions (superior parietal lobe and the inferior parietal lobule of the posterior

parietal cortex), as well as regions important for working-memory/executive control function

(dorsolateral prefrontal cortex), memory-related regions (hippocampus) and motor imagery-

related regions (precuneus, parahippocampal gyrus, posterior cingulate cortex) [47]. The

primary motor cortex included the precentral gyrus, and it was limited rostrally by the

precentral sulcus and caudally by the Rolandic sulcus [105]. The dorsolateral prefrontal

cortex (dLPFC) included the middle frontal gyrus. The posterior cingulate cortex was

limited by the corpus callosum rostrally and the subparietal sulcus caudally. The basal

ganglia included pallidum, putamen, caudate and thalamus. The hippocampus was defined

on the sagittal views as the gray matter around the ventricles horns limited caudally by the
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parahippocampal ramus.

Participants from the CHS study were 78.3 ± 4.1 years old, 57% women, 72% white and

their gait speed was 0.9 ± 0.2 m/sec. Participants from the Healthy Brain Project study

were 81.9 ± 2.7 years old, 55% women, 61% white and their gait speed was 1.0 ± 0.3 m/sec.

The paper is presented in the following fashion. Section 5.1 develops the self-adaptive

“black box” Brain-Gait Correlator for simultaneous and correlation of all ROIs with complete

gait data. Section 5.2 validates the Brain-Gait Correlator with two problems. The first

problem has real brain volume measurements and a synthetic walking speed (created from a

hypothesized correlation). The second is a purely synthetic problem to determine how the

algorithm handles noisy measurements. Section 5.3 applies the Brain-Gait Correlator to real

brain volume measurements and real walking speeds.

5.1 THE BRAIN-GAIT CORRELATOR ALGORITHM

This section gives a detailed presentation of a reliable algorithm to produce precise brain-

gait correlations even in cases when least squares regression fails. The algorithm is built

using five component sub-algorithms (described in Algorithm 5.1.1 below). Important as-

pects are the introduction of an iterated Tikhonov regularization parameter α to control for

approximate co-linearity and a number of iteration steps J to stop convergence to a noisy

solution. The regularization parameter is selected self-adaptively by the L-curve method to

balance optimally the needs of high precision and control of noise amplification. The number

of iteration steps is selected by our stopping criterion (Algorithm 5.1.9). Algorithm 5.1.1

reverts to ordinary least squares when regularization parameter α = 0.

Algorithm 5.1.1 (Brain-Gait Correlator). The Brain-Gait Correlator is a collection of

Algorithms 5.1.3, 5.1.4, 5.1.5, 5.1.9 and 5.1.10 to calculate the approximate solution, confi-

dence intervals and p-values for the modeling problem (5.1).

1. Apply Algorithm 5.1.3 to statistically normalize the measured data.

2. Apply Algorithm 5.1.5 to choose a regularization parameter α by the L-curve method.
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Figure 14: Multiple orientations of the brain displaying the colored ROIs that are studied

in Problem 5.2.1 and Section 5.3
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3. Apply Algorithm 5.1.4 to calculate the approximate solution for (5.1) via iterated Tik-

honov regularization.

4. If an estimate of the noise is known, apply Algorithm 5.1.9 to choose a stopping condition,

otherwise take J in Algorithm 5.1.4 to be small.

5. Apply Algorithm 5.1.10 to approximate confidence intervals for our solution and p-values

using a bootstrap by adding variations of noise to the data b and recalculating the solution

using steps 1 - 4.

Definition 5.1.2. The statistical normalization of a vector ~v is defined to be the vector

normalization(~v) =
~v − average(~v)

stdev(~v)
, (5.2)

where average(~v) for a vector with n components is 1
n−1

∑n
i=1 vi and

stdev(~v) =

√√√√ 1

n

n∑
i=1

(~vi − average(~v))2.

Statistical normalization is standard practice, see [8, 43, 44, 69]. Boolean data, such as

male/female or black/white, should not be normalized.

Algorithm 5.1.3 (Statistical Normalization). Denote the ith column of a matrix A by A·,i.

For a set of columns C of matrix A, the statistical normalization Ã is the matrix calculated

by

Ã·,i =

 normalization(A·,i) : i ∈ C

A·,i : i /∈ C
(5.3)

The foundation of the Brain-Gait Correlator for calculating the regression coefficients is

iterated Tikhonov regularization.

Algorithm 5.1.4 (Iterated Tikhonov regularization). Choose regularization parameter α ≥

0 and J ≥ 1. For j = 0, ..., J , calculate the iterated Tikhonov approximations to problem

(5.1) by solving for xj which satisfies

(A∗A+ αI)x0 = A∗b, (A∗A+ αI)(xj − xj−1) = A∗(b− Axj−1) (5.4)

Define xJ = xJ(α) to be the J th iterated Tikhonov approximation of problem (5.1).
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This introduces two parameters that need to be chosen for calculations, the regularization

parameter α and the stopping parameter J . The first is calculated using the L-curve method

developed by Hansen [40] for discrete ill-posed problems and further studied by Hansen and

O’Leary [42]. When the magnitude of the noise is known, the stopping parameter is chosen

by the Stopping Criterion in Algorithm 5.1.9. When the magnitude of the noise is not known,

we chose J to be 1.

Previous work [76] has studied using least squares regression to calculate regression co-

efficients. Applying the L-curve method in Algorithm 5.1.1 Step 2, allows for the case when

α = 0 if that solution is the best balance of stability and accuracy. However, if another

parameter will give a better balance, then the L-curve method will choose that parameter.

Algorithm 5.1.5 (The L-curve Method). For a fixed J in iterated Tikhonov regularization,

select a set of regularization parameters {αi} and plot the parametric graph of the norm of

the solution ‖xJ(α)‖ versus the norm of the residual ‖AxJ(α)− b‖.

1. For each regularization parameter αi, calculate the Tikhonov approximation xJ(αi) using

(5.4).

2. Plot the parametric graph of ‖xJ(α)‖ versus ‖AxJ(α)− b‖ on a log-log scale.

3. Find the corner of this graph, i.e. the point of maximum curvature.

4. The α that is the maximizer of the curvature is taken to be the regularization parameter.

We use following definition for curvature from [23].

Definition 5.1.6. The curvature of the L-curve graph at a point α is defined to be

κ(α) =
ξ′′(α)η′(α)− ξ′(α)η′′(α)

(ξ′(α)2 + η′(α)2)3/2
, (5.5)

where ξ(α) = log(‖b− AxJ(α)‖) and η(α) = log(‖xJ(α)‖).

We calculate the curvature for 60 different values of α across 12 orders of magnitude

and select the α that gives the largest curvature. Next, we develop a stopping criteria for

iterated Tikhonov regularization. Start by decomposing the gait data as b = y + ε where y

is the true gait measurement and ε is the noise/observational error of the problem. Then

the model problem (5.1) is decomposed as

Ax = y + ε. (5.6)
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Least squares regression for (5.6) is equivalent to the minimization problem

xLS = minimizerv∈Rn Eε(v) , where Eε(v) :=
1

2
(A∗Av, v)− (A∗(y + ε), v).

We are using (·, ·) to denote the usual Euclidean inner product and || · || to denote the

Euclidean norm. Given xj, the j + 1th iterated Tikhonov is the unique minimizer of

xj+1 = minimizerv∈X Eε(v) +
α

2
||v − xj||2.

The next theorem is a novel contribution that elucidates when the iterated Tikhonov ap-

proximations x0, x1, · · · form a minimizing sequence for the functional E0(·) := Eε(·)|ε≡0

associated with the (unknown) noise free data.

Theorem 5.1.7. Let α > 0. Then the iterated Tikhonov approximations form a minimizing

sequence for Eε. In particular,

Eε(xj)− Eε(xj+1) =
1

2
((A∗A+ 2αI)(xj+1 − xj), xj+1 − xj) ≥ 0. (5.7)

Thus

Eε(xj+1) < Eε(xj), unless xj+1 = xj.

Moreover, as j →∞ for fixed α, ||A∗b− A∗Axj|| → 0.
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Proof. We have

Eε(xj)− Eε(xj+1) =
1

2
(A∗Axj, xj)−

1

2
(A∗Axj+1, xj+1)

− (A∗(y + ε), xj − xj+1)

=
1

2
(A∗Axj, xj)−

1

2
(A∗Axj+1, xj+1)− (A∗Axj, xj − xj+1)

− ((A∗A+ αI)(xj+1 − xj), xj − xj+1)

= −1

2
(A∗Axj, xj) +

1

2
(A∗Axj, xj+1)

+
1

2
(A∗Axj, xj+1)− 1

2
(A∗Axj+1, xj+1)

− ((A∗A+ αI)(xj+1 − xj), xj − xj+1)

=
1

2
(A∗Axj, xj+1 − xj) +

1

2
(A∗Axj+1, xj − xj+1)

− ((A∗A+ αI)(xj+1 − xj), xj − xj+1)

=
1

2
(A∗A(xj − xj+1), xj+1 − xj)

− ((A∗A+ αI)(xj+1 − xj), xj − xj+1)

=
1

2
((A∗A+ 2αI)(xj+1 − xj), xj+1 − xj)

Since the right hand side of (5.7) is positive unless xj+1 = xj, it immediately follows that

Eε(xj+1) < Eε(xj), unless xj+1 = xj as claimed.

To show that ||A∗b−A∗Axj|| → 0, note that Eε(·) is bounded since A∗A ≥ 0. Hence, the

monotonically decreasing numbers Eε(xj) are convergent. The RHS of equation (5.7) then

implies that ||xj+1 − xj|| → 0 as j → ∞. From the form of the updates, xj+1 = xj only if

A∗Axj = A∗y, see (5.4). Finally, the RHS of the iterated Tikhonov algorithm (5.4) implies

that the residual ||A∗b− A∗Axj|| → 0.

Since the problem we seek to solve is the noise-free one

A∗Axtrue = A∗y,

and this is equivalent to finding the minimizer of the noise free functional E0(v), Theorem

5.1.8 shows under what conditions the updates reduce the noise-free functional

E0(v) :=
1

2
(A∗Av, v)− (A∗y, v).
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Theorem 5.1.8. Let α > 0 and ||ε|| ≤ ε0. Then the iterated Tikhonov approximations

satisfy

E0(xj)− E0(xj+1) = −(ε, xj+1 − xj) +
1

2
((A∗A+ 2αI)(xj+1 − xj), xj+1 − xj). (5.8)

They are a descent sequence for the noise-free functional E0(·) as long as

α ≥ ε0

||xj+1 − xj||
. (5.9)

Moreover, the termination criterion to stop when (5.9) is violated is equivalent to the dis-

crepancy principle [23] of stopping when

||A∗Axj+1 − A∗b|| ≥ ε0. (5.10)

Proof. Equation (5.8) follows from noting that Eε(v) = E0(v) − (A∗ε, v) and substituting

this into (5.7). Then the Cauchy-Schwartz inequality implies that

|(ε, xj+1 − xj)| ≤ ‖ε‖‖xj+1 − xj‖.

If (5.9) holds, then

0 ≤ ‖ε‖‖xj+1 − xj‖ − |(ε, xj+1 − xj)|

≤ α‖xj+1 − xj‖2 − |(ε, xj+1 − xj)|

≤ 1

2
((A∗A+ 2αI)(xj+1 − xj), xj+1 − xj)− (ε, xj+1 − xj)

The last line of this inequality follows from

(A∗A(xj+1 − xj), xj+1 − xj) ≥ 0 and (ε, xj+1 − xj) ≤ |(ε, xj+1 − xj)|.

The equivalence to the discrepancy principle comes from subtracting (5.4) for xj from (5.4)

for xj+1 to obtain

(A∗A+ αI)((xj+1 − xj)− (xj − xj−1)) = −A∗A(xj − xj−1).

Simplifying this yields

A∗(b− Axj) = α(xj − xj−1).

Taking the norm of the equation gives the result.
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Theorem 5.1.8 shows that in the early steps, where larger updates are expected, xj moves

closer to the noise-free solution as j increases. As the updates become smaller, xj converges

to the noisy solution by Theorem 5.1.7. If the inequality in (5.9) is violated for some j, then

Theorem 5.1.8 suggests either stopping the updates at that point or increasing α to permit

further updating to potentially obtain a better approximation to the noise-free problem.

This gives Algorithm 5.1.9, a new stopping condition for iterated Tikhonov regularization.

Algorithm 5.1.9 (Stopping Criterion). Given data b+ ε, Suppose ε0 ≥ ||ε||. Select α.

Solve for x0: (A∗A+ αI) x0 = A∗b.

For j = 1, 2, ··· and while α ≥ ε0
||xj−xj−1|| solve for xj : (A∗A+αI)[xj−xj−1] = A∗b−A∗A

xj−1.

If α < ε0
||xj−xj−1|| then compute as above xj − xj−1 and solve for xj.

Next, we estimate p-values to quantify the certainty of our solution. P-values are the

probability (due to distributional noise as well as correlations in A and b) of obtaining data-

derived coefficients xJ that exceed the calculated original dataset xJ coefficients under the

assumption that the true (no noise) coefficients xJ are 0. In this probability framework, the

original (A, b) is considered as one realization from an underlying joint distribution of possible

(A, b). P-vales less than 0.05 are interpreted as unusual or sufficiently improbable enough

(assuming that xJ is 0) that the data are actually providing evidence that the true xJ is not 0.

In this case, the result is declared statistically significant. With Gaussian noise, p-values can

be computed exactly using the closed-form of the multivariate normal distribution together

with the closed-form sampling distributions of the variances and correlations of the columns

of A and b [85,87]. In the general case, the bootstrap method, presented in Algorithm 5.1.10,

can be used to obtain approximate p-values without having to make specific distributional

assumptions [20,108].

Algorithm 5.1.10 (Bootstrap). For a given number of ROI n, fix T > n, the number of

bootstrap calculations, and α > 0, the regularization parameter.

• Using iterated Tikhonov regularization (5.4), calculate the solution xJ and the residual

e = b− AxJ .

• Scale e by a factor of
√

T
T−n .
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• For t = 1, 2, . . . , T

– Create an artificial noise term by choosing terms randomly with replacement from

the scaled e and call this ẽt.

– Calculate pseudo-data b̃t by taking b̃t = AxJ + ẽt.

– Calculate the Tikhonov approximation xtJ via (5.4) using pseudo-data b̃t.

– Save each xtJ .

We obtain statistical information from the statistical properties of the xtJ .

Definition 5.1.11 (Confidence interval and p-value). Denote xJ(i) to be the ith term in

xJ . Similarly xtJ(i) = xt(i) will denote the ith term of xtJ . For every i, order the coefficients

xt(i) in increasing order. The endpoints of the 95% confidence interval for xJ(i) are the

2.5th percentile and the 97.5th percentile of xt(i).

The p-value for xJ(i) is calculated by finding the first k such that the ordered xkJ(i) changes

signs, if xtJ(i) does not change signs, then we define k = 1 by convention. Then the p-value

is calculated as p = 2k
T

if k < T
2

or p = 2(k−T/2)
T

otherwise.

In step 1 of Algorithm 5.1.1, we statistically normalize the data. Definition 5.1.12 defines

this in a matrix operator sense.

Definition 5.1.12 (Column average). The column average of a matrix A ∈ Rn×m, is a

matrix A ∈ Rn×m defined column-wise. Each entry in column i of A is

Aj,i = average(A·,i), ∀i ∈ 1, · · · ,m, ∀j ∈ 1, · · · , n. (5.11)

Lemma 5.1.13. If x̃ is the ordinary least squares (OLS) solution to Ax = b, then x̃ is the

OLS solution to (A− A)x = b if and only if A
∗
(b− Ax̃) = 0.

Proof. The OLS x̃ satisfies

A∗Ax̃ = A∗b

by writing A = A− A+ A and collecting terms, we get that x̃ satisfies

(A− A)∗(A− A)x̃ = (A− A)∗b+ A
∗
(b− Ax̃)− (A− A)∗Ax̃.
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However, (A− A)∗A = 0, so the previous line is true if and only if

(A− A)∗(A− A)x̃ = (A− A)∗b+ A
∗
(b− Ax̃)

Lemma 5.1.13 shows that if the residual of the OLS solution is in the nullspace of the A
∗

operator, that is, the sum of the residuals is 0, then the solution of the modified problem is

equivalent to the solution to the original problem.

5.2 VALIDATION OF THE BRAIN-GAIT CORRELATOR

We validate the Brain-Gait Correlator through two problems in this section. For both, we

create an exact solution mimicking the type of behavior we expect to see in the correlation of

real brain measurements to gait measurements, that is a few coefficients that are significant

and the rest having no correlation. We calculate the right hand side data b by multiplying the

matrix A with the created dependencies x, and noise is then added to this data. The system

is solved using the Brain-Gait Correlator algorithm. Since the exact solution is known, the

error between the true solution of the noise free problem and the computed solution of the

noisy problem with the Brain-Gait Correlator can be computed.

A successful algorithm will produce a solution with an error on the order of the noise

input and a small confidence interval containing the noise free solution. The successful

algorithm will also produce a solution with small p-values for all significant variables and

have a near optimal choice for the regularization parameter. The optimal regularization

parameter (generally unknowable) is defined as the regularization parameter that minimizes

the error between the approximated solution and the true solution.

The first problem uses real brain volume measurements of the ROIs and synthesized

walking speeds by taking a hypothesized correlation equation and determining what speeds

correspond to each set of brain measurements. The second problem is a synthetic example

where the matrix A is highly co-linear.
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5.2.1 Brain measurement data with synthetic gait data

For this validation the data is created by taking actual brain measurements and correlation

coefficients from actual data using a least squares solution of the Healthy Brain Project data.

These are the target coefficients listed in Table 8. We add normally distributed noise (with

mean 0 and standard deviation 0.87) to the right hand side, our simulated gait variable.

This variation in noise corresponds to the variation of the actual gait measurements from

the Healthy Brain Project data in Section 5.3. The regression calculation only uses the data

from the measurements of the variables listed in Table 8. In this experiment, there were 97

subjects and 10 coefficients to calculate. Brain measurements were selected by first using

a regression analysis of the Healthy Brain Project data and choosing the most significant

regions.

The calculation is run using 1000 bootstrap steps and is summarized in Table 8. Table 8

shows that all ROIs are reported significant and there is only one brain variables (total gm)

that is not considered statistically significant in this calculation, but the calculated value

is close to the true value. Also to note is that the age and log pallidum measurements are

statistically significant, but the true coefficients fall outside the 95% confidence interval. The

total gray matter and baseline constant terms are within the confidence range. Algorithm

5.1.1 and least squares regression (the case where α = 0) both determine five out of the six

brain variables are significant. The regularization parameter chosen was 2.395e-07 signifying

a small amount of regularization is needed.

Next we add measurements of the other 23 measured gray matter volume variables that

do not occur in the exact regression equation. That is, the true coefficients for each term

should be zero. The Brain-Gait Correlator applied to the entire data reports that two

out of the six brain variables are significant with a third that is nearly significant. Least

squares gives comparable results with three of the brain variables reported as significant.

These results are sorted in order of increasing p-values and summarized in Table 9 for the

Brain-Gait Correlator and Table 11 for least squares regression.
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Table 8: True values used to simulate the data and regression coefficients calculated using

Algorithm 5.1.1 on problem 5.2.1 (the synthetic gait test) using 5 ROIs, only the regions used

to create the data. All 5 of the brain ROI calculated coefficients are reported as statistically

significant.

Variable True Coef In CI Reg. Coef 95% Conf Int p-value

Constant -3.0e-6 yes -0.020 ( -0.076 , 0.039) 0.484

black -0.20 yes -0.148 ( -0.203 , -0.096) 0.002

male 0.26 yes 0.235 ( 0.177 , 0.297) 0.002

age -0.28 no -0.220 ( -0.272 , -0.161) 0.002

gray matter (total) -0.05 yes -0.076 ( -0.168 , 0.008) 0.080

putamen (left) 0.21 yes 0.155 ( 0.080 , 0.235) 0.002

cingulum post (right) -0.13 yes -0.162 ( -0.224 , -0.102) 0.002

cuneus (right) 0.15 yes 0.127 ( 0.059 , 0.197) 0.002

dLPFC (left) 0.12 yes 0.146 ( 0.078 , 0.216) 0.002

log pallidum (left) -0.21 no -0.096 ( -0.176 , -0.017) 0.012
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Table 9: Regression coefficients using the Brain-Gait Correlator on the problem 5.2.1 (the

synthetic gait test) using all 33 available brain volumes from ROI and demographic variables.

Note that the calculated coefficients for all ROI lie in the 95% confidence interval.

Variable True Coef In CI Reg. Coef 95% Conf Int p-value

Constant 3.0e-6 yes -0.019 ( -0.084 , 0.039) 0.492

black -0.20 yes -0.178 ( -0.250 , -0.104) 0.002

male 0.26 yes 0.234 ( 0.158 , 0.302) 0.002

age -0.28 yes -0.232 ( -0.303 , -0.156) 0.002

gray matter (total) -0.05 yes 0.003 ( -0.276 , 0.258) 0.992

cingulum post (right) -0.13 yes -0.147 ( -0.249 , -0.040) 0.006

dLPFC (left) 0.12 yes 0.132 ( 0.032 , 0.232) 0.008

cuneus (right) 0.15 yes 0.122 ( -0.011 , 0.239) 0.072

putamen (right) 0.00 yes 0.114 ( -0.036 , 0.266) 0.108

precuneus (left) 0.00 yes -0.079 ( -0.206 , 0.032) 0.174

postcentral (left) 0.00 yes 0.095 ( -0.042 , 0.239) 0.180

parietal sup (left) 0.00 yes 0.067 ( -0.037 , 0.162) 0.214

precuneus (right) 0.00 yes -0.066 ( -0.186 , 0.060) 0.286

postcentral (right) 0.00 yes -0.058 ( -0.225 , 0.095) 0.396
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Table 10: Continuation of Table 9.

Variable True Coef In CI Reg. Coef 95% Conf Int p-value

log pallidum (left) -0.21 yes -0.057 ( -0.219 , 0.098) 0.506

parietal inf (right) 0.00 yes 0.034 ( -0.069 , 0.134) 0.522

cuneus (left) 0.00 yes 0.035 ( -0.081 , 0.139) 0.528

caudate (right) 0.00 yes 0.030 ( -0.089 , 0.133) 0.586

log pallidum (right) 0.00 yes -0.043 ( -0.195 , 0.102) 0.610

hippocampus (right) 0.00 yes -0.027 ( -0.139 , 0.087) 0.622

putamen (left) 0.21 yes 0.044 ( -0.134 , 0.216) 0.664

precentral (right) 0.00 yes -0.024 ( -0.163 , 0.127) 0.754

dLPFC (right) 0.00 yes -0.020 ( -0.137 , 0.091) 0.762

precentral (left) 0.00 yes -0.019 ( -0.169 , 0.132) 0.768

parietal inf (left) 0.00 yes -0.019 ( -0.145 , 0.105) 0.818

cerebellum (right) 0.00 yes -0.020 ( -0.203 , 0.161) 0.824

cingulum post (left) 0.00 yes 0.015 ( -0.097 , 0.120) 0.856

cerebellum (left) 0.00 yes -0.018 ( -0.259 , 0.215) 0.870

parietal sup (right) 0.00 yes -0.011 ( -0.146 , 0.113) 0.872

thalamus (left) 0.00 yes 0.012 ( -0.233 , 0.276) 0.916

hippocamus (left) 0.00 yes -0.007 ( -0.124 , 0.114) 0.934

thalamus (right) 0.00 yes 0.013 ( -0.218 , 0.246) 0.944

caudate (left) 0.00 yes 0.001 ( -0.121 , 0.123) 0.998

121



Table 11: Regression coefficients using ordinary least squares regression on Problem 5.2.1

(the synthetic gait test). The solution is similar to Algorithm 5.1.1 and reported in Table 9,

because least squares regression gives a stable result.

Variable Reg. Coef 95% Conf Int p-value

Constant -0.019 ( -0.079 , 0.043) 0.552

black -0.178 ( -0.253 , -0.100) 0.002

male 0.234 ( 0.163 , 0.303) 0.002

Age -0.232 ( -0.311 , -0.158) 0.002

gray matter (total) 0.003 ( -0.261 , 0.258) 0.954

Cingulum post (right) -0.147 ( -0.257 , -0.039) 0.006

Middle frontal gyrus (left) 0.132 ( 0.035 , 0.231) 0.010

Cuneus (right) 0.122 ( -0.009 , 0.242) 0.070

Putamen (right) 0.114 ( -0.031 , 0.267) 0.112

Parietal Sup (left) 0.067 ( -0.038 , 0.180) 0.188

Postcentral (left) 0.095 ( -0.054 , 0.233) 0.192

Precuneus (left) -0.079 ( -0.202 , 0.041) 0.200

Precuneus (right) -0.066 ( -0.191 , 0.069) 0.364

Postcentral (right) -0.058 ( -0.208 , 0.096) 0.426

122



Table 12: Continuation of Table 11.

Variable Reg. Coef 95% Conf Int p-value

Cuneus (left) 0.035 ( -0.068 , 0.147) 0.512

Parietal inf (right) 0.034 ( -0.069 , 0.147) 0.518

Log pallidum (left) -0.057 ( -0.209 , 0.114) 0.534

Log pallidum (right) -0.043 ( -0.196 , 0.096) 0.552

Hippocampus (right) -0.027 ( -0.132 , 0.076) 0.622

Caudate (right) 0.030 ( -0.082 , 0.138) 0.632

Putamen (left) 0.044 ( -0.136 , 0.208) 0.648

Middle frontal gyrus (right) -0.020 ( -0.128 , 0.091) 0.728

Parietal inf (left) -0.019 ( -0.140 , 0.096) 0.752

Precentral (right) -0.024 ( -0.178 , 0.125) 0.766

Cingulum post (left) 0.015 ( -0.096 , 0.121) 0.792

Precentral (left) -0.019 ( -0.176 , 0.119) 0.796

Cerebellum (right) -0.020 ( -0.216 , 0.158) 0.822

Parietal sup (right) -0.011 ( -0.142 , 0.110) 0.834

Thalamus (right) 0.013 ( -0.208 , 0.260) 0.866

Cerebellum (left) -0.018 ( -0.246 , 0.204) 0.910

Hippocampus (left) -0.007 ( -0.123 , 0.107) 0.912

Caudate (left) 0.001 ( -0.129 , 0.125) 0.934

Thalamus (left) 0.012 ( -0.244 , 0.264) 0.966
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5.2.2 Synthetic problem with high approximate co-linearity

This validation used three variables (called x1, x2, and x3) and a baseline (called Constant)

that correlated with the outcome y. The outcome y had no correlation to the variables x4

through x20. The correlation used is

y = 0.1 + 1.0x1 + 0.1x2 + 0.1x3. (5.12)

We then created 100 sets of values for x1 through x20 by forming five copies of a 20×20 Hilbert

matrix, with entries Hi,j = 1
i+j+1

, joined together for a system that is 100×20. We calculate

the y corresponding to the x via (5.12) and add 10% normally distributed noise to y (‖noise‖‖y‖ =

0.10). Table 13 reports the results of the Brain-Gait Correlator applied to this problem with

2000 bootstrap steps. Due to the definition of the correlation coefficients in (5.12), we do

not normalize the system (step 1 in 5.1.1). This is not significant computationally as the

normalization of this problem reduces the condition number from 4.7 × 1018 to 7.9 × 1016.

The stopping condition determined J = 1 to be optimal.

Table 13 also shows the 4 nonzero coefficients in the noise free solution, that is x1, x2, x3

and the constant term, as significant. The x4 term is also reported significant. Table 13 also

shows that the true correlation coefficients for values of the constant term and x3 lie within

the calculated confidence intervals and the x1 calculated solution is within 9% of the noise

free solution. The x2 calculated coefficient has the correct correlation direction, though it is

more than twice the noise free solution.

The relative error of the approximated solution using the Brain-Gait Correlator is 16.87%

which is the same order of magnitude as the noise (10%). The regularization parameter

chosen by the Brain-Gait Correlator algorithm is α = 0.001 which suggests that some reg-

ularization is necessary to accurately solve this problem. We calculate the actual optimal

regularization parameter by finding the value of α that minimizes ‖xtrue−x(α)‖. The optimal

parameter is α = .0001887 which is close to our chosen regularization parameter.

The results presented in Table 14 come from forcing α = 0, corresponding to no regu-

larization (least squares regularization). The relative error in this solution is 9, 324, 000%.

Table 14 also shows that none of the variables are reported as significant.
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Table 13: Solution using the Brain-Gait Correlator on problem 5.2.2. Note that all of the

variables used to create the data (x1−x3) and the constant term, as well as x4, are reported

as significant, and x5 − x20 are insignificant.

Variable Reg. Coef 95% Conf Int p-value

Constant 0.096 ( 0.060 , 0.119) 0.001

x1 0.915 ( 0.772 , 0.973) 0.001

x2 0.241 ( 0.217 , 0.332) 0.001

x3 0.088 ( 0.056 , 0.181) 0.001

x4 0.034 ( 0.000 , 0.118) 0.045

x5 0.011 ( -0.024 , 0.083) 0.309

x6 0.001 ( -0.036 , 0.063) 0.626

x7 -0.004 ( -0.041 , 0.050) 0.904

x8 -0.007 ( -0.043 , 0.041) 0.906

x9 -0.008 ( -0.042 , 0.035) 0.815

x10 -0.008 ( -0.041 , 0.029) 0.738

x11 -0.008 ( -0.040 , 0.025) 0.675

x12 -0.008 ( -0.039 , 0.023) 0.631

x13 -0.007 ( -0.037 , 0.021) 0.594

x14 -0.007 ( -0.035 , 0.019) 0.565

x15 -0.007 ( -0.033 , 0.017) 0.546

x16 -0.006 ( -0.031 , 0.016) 0.543

x17 -0.006 ( -0.030 , 0.015) 0.530

x18 -0.005 ( -0.028 , 0.014) 0.522

x19 -0.005 ( -0.027 , 0.013) 0.517

x20 -0.005 ( -0.025 , 0.012) 0.511
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Table 14: Solution using least squares (α = 0 in Algorithm 5.1.1) on Problem 5.2.2. Note

that the ordinary least squares solution fails: 10% noise in the data is amplified to 9,000,000%

error in the solution.

Variable Reg. Coef 95% Conf Int p-value

Constant -5.318 ( -72.131 , 46.932) 0.674

x1 -457.425 (-856.118 , 493.905) 0.556

x2 19459.666 (-18538.570 , 30817.381) 0.605

x3 -192556.227 (-264417.095 , 177377.668) 0.693

x4 684626.985 (-688145.101 , 869414.940) 0.790

x5 -734336.274 (-926195.934 , 891065.970) 0.913

x6 -556687.510 (-735565.866 , 560915.710) 0.783

x7 448789.414 (-651855.744 , 568921.101) 0.954

x8 1932993.526 (-2465071.196 , 2423511.588) 0.965

x9 100072.993 (-126791.223 , 209479.022) 0.604

x10 -3159960.633 (-4021219.077 , 4439855.858) 0.970

x11 -932341.999 (-1212020.826 , 1205611.293) 0.952

x12 1320998.037 (-1747726.667 , 1660887.956) 0.995

x13 1325016.498 (-2014809.971 , 1693703.844) 0.933

x14 5031673.344 (-6586852.012 , 6283665.792) 0.985

x15 -6576167.402 (-8234187.248 , 8538522.537) 0.984

x16 111471.992 (-694018.433 , 469540.741) 0.709

x17 283431.407 (-576290.682 , 852003.799) 0.678

x18 774668.858 (-1381401.472 , 1099715.404) 0.893

x19 620896.589 (-751750.672 , 782239.520) 0.910

x20 -500949.194 (-651349.658 , 751644.675) 0.935
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This validation shows that in cases with high co-linearity of the measurements (x1−x20)

and noise in the observed data, regularization is necessary to obtain an accurate answer.

The Brain-Gait Correlator provides the correct amount of regularization with no knowledge

of the amount of noise added to the system.

These two experiments show that Algorithm 5.1.1 automatically selects whether or not

least squares regression is optimal. If least squares regression is not the optimal method, it

selects a method that gives a much more reliable solution.

5.3 APPLICATION OF THE BRAIN-GAIT CORRELATOR TO REAL

MEASUREMENTS

The data used in this section comes from the Healthy Brain Project and the Cardiovascular

Health Study (CHS) [77]. In the following experiment, we apply the Brain-Gait Correlator

algorithm to this data. We have no á priori estimate of the noise level, so we pick a small

value for the stopping criterion instead of using Algorithm 5.1.9. In this case, we select J = 1

and the number of bootstrap steps to be 1000.

5.3.1 Healthy Brain Project

When analyzing 302 participants and using 28 different brain ROIs and 5 demographic

variables, the condition number of the system is 1.9 × 107. However after standardizing,

the condition number of the system is 16, and the algorithm selects α = 1.74× 10−11. The

variables used for this test are the demographic variables (age, race, and gender) and the

gray matter volume of brain ROIs. We assigned a numerical gender variable of 0 if the

participant is female and 1 if the participant is male. Similarly, a numerical race variable of

0 was assigned if the participant is black and 1 if the participant is white. The calculated

coefficients are listed in order of increasing p-values in Table 15.

Table 15 shows that all of the personal demographic variables are reported as significant.

Also, the right region of the cuneus, the left region of dlpfc and the total gray matter are
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close to being 95% significant (0.05 < p < 0.1).

5.3.2 Cardiovascular Health Study

We study the correlation of gait to brain size and activity for the data set obtained by CHS.

When we applied the Brain-Gait Correlator algorithm to CHS data, we found that 3 of the

first 4 brain regions (with p-value < 0.2) that the algorithm identified (BA11 right, BA9

left, BA45 left) overlapped with those identified using correlation analysis of each region at

a time (BA11 Right and Left, BA6, 9,45 and cerebellum in the left hemisphere, Precuneus

Right and Left) [77].

Table 17 shows the correlations between the ROIs selected from [77] and the gait speed

using the Brain-Gait Correlator algorithm. This shows the Brain-Gait Correlator algorithm’s

use in selecting important ROIs to study further without applying the tedious methods of

individual analysis used in [77].

5.4 CONCLUSION

The Brain-Gait Correlator algorithm addresses the four limitations of current methods in

neuroimaging: noise, high correlation, large number of predictors and scalability. The al-

gorithm is a robust method of calculating brain parameters. The Brain-Gait Correlator

algorithm is built using components of least squares regression, regularization for enhanced

stability, and automatic parameter selection via the L-curve method. When least squares

regression works, the Brain-Gait Correlator produces comparable results as shown in Section

5.2.1. However, when least squares regression fails, the Brain-Gait Correlator still produces

reliable results as shown in Section 5.2.2.

The analysis of the HBP dataset in Section 5.3.1 shows that smaller gray matter volume of

the left Dorsolateral prefrontal cortex was the brain MRI variable most strongly associated

with slower gait. This finding is consistent with the previous analysis [77]. Section 5.3.2

shows an additional use of the Brain-Gait Correlator as an identifier of significant ROIs in
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Table 15: Regression coefficients from the Healthy Brain Project dataset using 33 parame-

ters. The middle frontal gyrus (left) and cuneus (right) regions are the most significant ROIs

examined.

Variable Reg. Coef 95% Conf Int p-value

Constant 0.973 ( 0.929 , 1.014) 0.002

race 0.109 ( 0.062 , 0.155) 0.002

gender 0.119 ( 0.069 , 0.169) 0.002

age -0.050 ( -0.075 , -0.029) 0.002

gray matter (total) -0.075 ( -0.164 , 0.014) 0.090

Middle frontal gyrus (left) 0.029 ( -0.005 , 0.061) 0.084

cuneus (right) 0.033 ( -0.006 , 0.070) 0.096

log pallidum (left) -0.034 ( -0.079 , 0.009) 0.124

cingulum post (right) -0.030 ( -0.069 , 0.008) 0.140

thalamus (right) -0.036 ( -0.090 , 0.018) 0.174

precentral (left) 0.029 ( -0.015 , 0.066) 0.184

parietal inf (left) 0.022 ( -0.013 , 0.058) 0.234

parietal sup (left) -0.019 ( -0.053 , 0.016) 0.254

caudate (left) 0.022 ( -0.014 , 0.058) 0.268

postcentral (right) 0.022 ( -0.017 , 0.064) 0.274

putamen (right) 0.028 ( -0.022 , 0.080) 0.276

putamen (left) 0.025 ( -0.028 , 0.072) 0.300
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Table 16: Continuation of Table 15.

Variable Reg. Coef 95% Conf Int p-value

log pallidum (right) -0.023 ( -0.067 , 0.020) 0.338

parietal sup (right) -0.016 ( -0.052 , 0.017) 0.340

hippocampus (right) 0.015 ( -0.018 , 0.052) 0.368

cerebellum (right) 0.023 ( -0.034 , 0.078) 0.388

hippocampus (left) 0.017 ( -0.021 , 0.052) 0.424

cerebellum (left) -0.021 ( -0.074 , 0.031) 0.458

thalamus (left) 0.019 ( -0.037 , 0.071) 0.476

precuneus (right) 0.013 ( -0.030 , 0.052) 0.560

precentral (right) -0.012 ( -0.054 , 0.029) 0.568

Middle frontal gyrus (right) -0.009 ( -0.045 , 0.028) 0.586

parietal inf (right) 0.009 ( -0.024 , 0.040) 0.622

postcentral (left) 0.010 ( -0.033 , 0.048) 0.628

cuneus (left) 0.009 ( -0.028 , 0.045) 0.660

precuneus (left) -0.007 ( -0.046 , 0.034) 0.776

caudate (right) -0.004 ( -0.038 , 0.033) 0.804

cingulum post (left) -0.002 ( -0.040 , 0.039) 0.888
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Table 17: Regression coefficients from the CHS dataset using 31 parameters. In one calcula-

tion, Algorithm 5.1.1 chooses 3 of the 6 regions that were previously identified as significant

by calculations of each individual parameter.

Variable Reg. Coef 95% Conf Int p-value

Constant 0.927 ( 0.905 , 0.950) 0.002

ba11 r m 0.063 ( 0.011 , 0.114) 0.014

ba45 r m -0.056 (-0.101 , -0.013) 0.014

ba9 l mn 0.030 (-0.011 , 0.069) 0.148

ba45 l m 0.028 (-0.014 , 0.072) 0.182

cereb l 0.026 (-0.015 , 0.064) 0.216

ba40 l m -0.025 (-0.068 , 0.014) 0.234

ba39 r m -0.025 (-0.066 , 0.020) 0.246

ba7 l mn 0.033 (-0.028 , 0.091) 0.278

Thalamus L -0.031 (-0.083 , 0.026) 0.286

Caudate R -0.021 (-0.061 , 0.019) 0.338

ba6 l mn 0.024 (-0.024 , 0.075) 0.338

ba9 r mn -0.016 (-0.057 , 0.024) 0.402

Putamen R 0.018 (-0.033 , 0.068) 0.454
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Table 18: Continuation of Table 17.

Variable Reg. Coef 95% Conf Int p-value

ParaHippocampal R 0.013 (-0.021 , 0.046) 0.456

Precuneus R -0.019 (-0.081 , 0.038) 0.492

ba7 r mn 0.016 (-0.041 , 0.073) 0.568

cereb r 0.011 (-0.031 , 0.056) 0.576

ba6 r mn 0.013 (-0.036 , 0.065) 0.580

ba39 l m 0.011 (-0.030 , 0.052) 0.594

Precuneus L -0.017 (-0.082 , 0.051) 0.608

ba46 r m 0.010 (-0.034 , 0.055) 0.674

Putamen L -0.010 (-0.062 , 0.042) 0.706

ba40 r m -0.008 (-0.049 , 0.034) 0.712

ba11 l m 0.012 (-0.042 , 0.065) 0.720

ba4 l mn -0.011 (-0.058 , 0.038) 0.724

Caudate L -0.009 (-0.053 , 0.036) 0.726

ba47 l m -0.008 (-0.051 , 0.035) 0.744

ba47 r m -0.006 (-0.051 , 0.035) 0.796

Thalamus R 0.006 (-0.047 , 0.064) 0.834

ba46 l m -0.006 (-0.041 , 0.034) 0.852

ba4 r mn -0.001 (-0.050 , 0.039) 0.890

ParaHippocampal L -0.001 (-0.035 , 0.032) 0.932
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a more direct manner than the previous analysis in [77].
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6.0 CONCLUSIONS AND FUTURE RESEARCH

“Each problem that I solved became a rule, which served afterwards to solve other problems.”

(René Descartes)

6.1 CONCLUSIONS

Inverse problems are an integral part of the sciences and deserve consideration. Tikhonov

regularization is a versatile method of solving these problems.

Chapter 2 demonstrated a superconvergence result: in the case when a regularity condi-

tion for iterated Tikhonov regularization is not globally satisfied, then some projections of the

error are significantly smaller than the theoretical predictions. We examined the sensitivity

of iterated Tikhonov regularization to the choice of the regularization parameter chosen. We

showed that higher order sensitivities correct for accuracy. We presented an algorithm that

is simple to implement, and it calculates the iterated Tikhonov updates and the sensitivi-

ties to the regularization parameter at a small computational cost more than the standard

iterated Tikhonov calculation. Our numerical experiments agree with the sensitivity and

superconvergence theory.

Chapter 3 examined a new modification to iterated Tikhonov-Lavrentiev regularization

for the specific application of deconvolution of the differential filter. We showed that this

modification to iterated Tikhonov-Lavrentiev decreases the theoretical error bounds from

O(α(δ2 + 1)) for Tikhonov-Lavrentiev regularization to O((αδ2)J+1). This result was ex-

tended to a generic iterated deconvolution method satisfying minimal assumptions in Chap-

ter 4. We then applied the deconvolution method to the Leray deconvolution model of fluid
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flow. We discretized the problem with Crank-Nicolson in time and finite elements in space.

We showed existence, uniqueness and optimal convergence CNFE rates with the addition of

the deconvolution errors for this solution. The convergence rates were confirmed quantita-

tively with a Taylor-Green vortex flow calculation. We examined the solution qualitatively

by calculating the flow of a fluid over a step and observing the shedding of eddies.

We also examined the combination of iterated Tikhonov regularization, the L-curve

method, a new stopping criterion and a bootstrapping algorithm, which we call the “Brain-

Gait Correlator” as a general solution method in brain mapping. This combination of meth-

ods overcomes the difficulties associated with brain mapping: uncertainty quantification,

co-linearity of the data, and data noise. We verified the algorithm against two problems

that illustrate different difficulties. The algorithm performed at least as well as the standard

method in brain mapping (ordinary least squares) in the worst case, and in the best case,

it performed significantly better. We used the Brain-Gait Correlator to estimate correlation

coefficients between brain regions and average walking speed as well as identify regions of

interest for future analysis.

6.2 FUTURE RESEARCH

The results presented in this paper can be extended by answering the following questions.

Modified Iterated Tikhonov:

• The filtering function uses homogenous or periodic boundary conditions. This is an

acceptable assumption for fluid flow because of the no-slip condition. However, when

you have inflow and outflow, what is the appropriate boundary condition to enforce?

Consider the problem of u(x, y) = cos(πx) cos(πy) in the region [0, 1]2. The differential

filter will give the solution of u = 1
2δ2π2+1

u in the interior. Continuity requires that we

define u = 1
2δ2π2+1

u on the boundary.

• The analysis of Theorem 3.4.2 requires α ≤ 1
2

to guarantee that the minimization of

the noisy energy functional is also minimizing the noise-free energy functional, and this

condition is necessary in the analysis. An enforced boundary on α, such as α ≤ 1/2 for
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the problem Ax = b can be avoided by solving 1
N
Ax = 1

N
b. The condition number of

this new problem is the same as the old problem, but the regularization parameter needs

to be smaller by a factor of N to obtain the same results. The new αN needed might be

under 1
2

and thus satisfy the minimization of noise-free energy criterion, but the original

problem with α would not satisfy the criterion.

Brain Imaging:

• The ultimate goal was to obtain reliable and repeatable numerical relations between gait

speed and ROI data. The next step to take is to extend the analysis and numerical

calculations to enforce sparsity conditions. This will look for the few regions that give

the largest results. One sparsity enforcing method is to use `p norms in the minimization

formulation of Tikhonov regularization. That is, in the space of acceptable regularization

coefficients Ω and for 1 ≤ p ≤ 2,

xα,p = arg min
x∈Ω
‖Ax− b‖2 + α‖x‖p`p . (6.1)

The minimization calculation puts a larger weight on small components of x with smaller

values of p compared to p = 2, especially for the limiting case p = 1. An iterative

threshold algorithm for this problem is presented in [18]. Further examples of sparse

solves can be found in [74]

• The Brain-Gait Correlator uses a statistical normalization. Lemma 5.1.13 gives a condi-

tion for when the ordinary least squares solution before normalization and after normal-

ization are equivalent. Can we quantify the amount of change in the solution due to the

normalization? For instance, if x̃ is the OLS solution of the original problem and x† is

the OLS solution of the normalized problem, then it can be shown (using (A−A)∗A = 0)

that the difference between the two is

x̃− x† = (A∗A)−1A
∗
(b+ Ax†).

Does this equation lead to estimates to how the condition numbers of A compare to

A− A (which will tell us about the amount of regularization needed)?
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• The statistical normalization step in step 1 of Algorithm 5.1.1 is a standard process

in statistics [8, 43, 44,69]. Applying ordinary least squares (OLS) regularization with an

infinite precision computer and a finite (but possibly large) condition number before nor-

malization and then normalizing the results afterward gives the exact same results as nor-

malization before OLS. The normalization process before regularization helps due to its

reduction of the condition number and the finiteness of computer arithmetic. Tikhonov

regularization (and iterated Tikhonov regularization) will have a different result because

of the meaning of αI before and after normalization. Is there a benefit in waiting to

normalize after applying Tikhonov regularization?

• The problem in Chapter 5 is to analyze the equation Ax = b when error is in the observed

right hand side gait data. However, the measurements of A come from brain MRI scans.

These scans are then transformed into a standard brain template to analyze the amounts

of brain volume and activity in a given section. These measurements and transformations

are potentially noisy, so there will be noise in the operator A. The next step to analyzing

this problem is to extend the current analysis to use total least squares (TLS) [32], as

opposed to ordinary least squares which only assumes noise in the right hand side. This

generalizes to Tikhonov regularization of the TLS [7, 31]. This can be further extended

to iterated Tikhonov regularization in the same method as Chapter 5.

• The data analyzed in this problem comes from real measurements. Currently, if one of

those measurements is missing, then the algorithm (in the select valid participants step)

eliminates that participant’s data from the analysis. In one case, about half of the par-

ticipants were missing one particular measurement, and the number of valid participants

dropped from approximately 300 to approximately 150. The operator had to screen the

data before the analysis could begin to eliminate the problem measurements. The next

question to answer is what can be done algorithmically for missing data.
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