16,064 research outputs found

    Distributed Key Management for Secure Role Based Messaging

    Get PDF
    Secure Role Based Messaging (SRBM) augments messaging systems with role oriented communication in a secure manner. Role occupants can sign and decrypt messages on behalf of roles. This paper identifies the requirements of SRBM and recognises the need for: distributed key shares, fast membership revocation, mandatory security controls and detection of identity spoofing. A shared RSA scheme is constructed. RSA keys are shared and distributed to role occupants and role gate keepers. Role occupants and role gate keepers must cooperate together to use the key shares to sign and decrypt the messages. Role occupant signatures can be verified by an audit service. A SRBM system architecture is developed to show the security related performance of the proposed scheme, which also demonstrates the implementation of fast membership revocation, mandatory security control and prevention of spoofing. It is shown that the proposed scheme has successfully coupled distributed security with mandatory security controls to realize secure role based messaging

    Towards secure end-to-end data aggregation in AMI through delayed-integrity-verification

    Get PDF
    The integrity and authenticity of the energy usage data in Advanced Metering Infrastructure (AMI) is crucial to ensure the correct energy load to facilitate generation, distribution and customer billing. Any malicious tampering to the data must be detected immediately. This paper introduces secure end-to-end data aggregation for AMI, a security protocol that allows the concentrators to securely aggregate the data collected from the smart meters, while enabling the utility back-end that receives the aggregated data to verify the integrity and data originality. Compromise of concentrators can be detected. The aggregated data is protected using Chameleon Signatures and then forwarded to the utility back-end for verification, accounting, and analysis. Using the Trapdoor Chameleon Hash Function, the smart meters can periodically send an evidence to the utility back-end, by computing an alternative message and a random value (m', r) such that m' consists of all previous energy usage measurements of the smart meter in a specified period of time. By verifying that the Chameleon Hash Value of (m', r) and that the energy usage matches those aggregated by the concentrators, the utility back-end is convinced of the integrity and authenticity of the data from the smart meters. Any data anomaly between smart meters and concentrators can be detected, thus indicating potential compromise of concentrators

    Biometric identity-based cryptography for e-Government environment

    Get PDF
    Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols

    Secure Distributed Dynamic State Estimation in Wide-Area Smart Grids

    Full text link
    Smart grid is a large complex network with a myriad of vulnerabilities, usually operated in adversarial settings and regulated based on estimated system states. In this study, we propose a novel highly secure distributed dynamic state estimation mechanism for wide-area (multi-area) smart grids, composed of geographically separated subregions, each supervised by a local control center. We firstly propose a distributed state estimator assuming regular system operation, that achieves near-optimal performance based on the local Kalman filters and with the exchange of necessary information between local centers. To enhance the security, we further propose to (i) protect the network database and the network communication channels against attacks and data manipulations via a blockchain (BC)-based system design, where the BC operates on the peer-to-peer network of local centers, (ii) locally detect the measurement anomalies in real-time to eliminate their effects on the state estimation process, and (iii) detect misbehaving (hacked/faulty) local centers in real-time via a distributed trust management scheme over the network. We provide theoretical guarantees regarding the false alarm rates of the proposed detection schemes, where the false alarms can be easily controlled. Numerical studies illustrate that the proposed mechanism offers reliable state estimation under regular system operation, timely and accurate detection of anomalies, and good state recovery performance in case of anomalies
    corecore