8 research outputs found

    A Side-Channel Assisted Cryptanalytic Attack Against QcBits

    Get PDF
    International audienceQcBits is a code-based public key algorithm based on a problem thought to be resistant to quantum computer attacks. It is a constant-time implementation for a quasi-cyclic moderate density parity check (QC-MDPC) Niederreiter encryption scheme, and has excellent performance and small key sizes. In this paper, we present a key recovery attack against QcBits. We first used differential power analysis (DPA) against the syndrome computation of the decoding algorithm to recover partial information about one half of the private key. We then used the recovered information to set up a system of noisy binary linear equations. Solving this system of equations gave us the entire key. Finally, we propose a simple but effective countermeasure against the power analysis used during the syndrome calculation

    Efficient BIKE Hardware Design with Constant-Time Decoder

    Get PDF
    BIKE (Bit-flipping Key Encapsulation) is a promising candidate running in the NIST Post-Quantum Cryptography Standardization process. It is a code-based cryptosystem that enjoys a simple definition, well-understood underlying security, and interesting performance. The most critical step in this cryptosystem consists of correcting errors in a QC-MDPC linear code. The BIKE team proposed variants of the Bit-Flipping Decoder for this step for Round 1 and 2 of the standardization process. In this paper, we propose an alternative decoder which is more friendly to hardware implementations, leading to a latency-area performance comparable to the literature while introducing power side channel resilience. We also show that our design can accelerate all key generation, encapsulation and decapsulation operations using very few common logic building blocks

    Algorithmic Security is Insufficient: A Comprehensive Survey on Implementation Attacks Haunting Post-Quantum Security

    Full text link
    This survey is on forward-looking, emerging security concerns in post-quantum era, i.e., the implementation attacks for 2022 winners of NIST post-quantum cryptography (PQC) competition and thus the visions, insights, and discussions can be used as a step forward towards scrutinizing the new standards for applications ranging from Metaverse, Web 3.0 to deeply-embedded systems. The rapid advances in quantum computing have brought immense opportunities for scientific discovery and technological progress; however, it poses a major risk to today's security since advanced quantum computers are believed to break all traditional public-key cryptographic algorithms. This has led to active research on PQC algorithms that are believed to be secure against classical and powerful quantum computers. However, algorithmic security is unfortunately insufficient, and many cryptographic algorithms are vulnerable to side-channel attacks (SCA), where an attacker passively or actively gets side-channel data to compromise the security properties that are assumed to be safe theoretically. In this survey, we explore such imminent threats and their countermeasures with respect to PQC. We provide the respective, latest advancements in PQC research, as well as assessments and providing visions on the different types of SCAs

    Faster Constant-Time Decoder for MDPC Codes and Applications to BIKE KEM

    Get PDF
    BIKE is a code-based key encapsulation mechanism (KEM) that was recently selected as an alternate candidate by the NIST’s standardization process on post-quantum cryptography. This KEM is based on the Niederreiter scheme instantiated with QC-MDPC codes, and it uses the BGF decoder for key decapsulation. We discovered important limitations of BGF that we describe in detail, and then we propose a new decoding algorithm for QC-MDPC codes called PickyFix. Our decoder uses two auxiliary iterations that are significantly different from previous approaches and we show how they can be implemented efficiently. We analyze our decoder with respect to both its error correction capacity and its performance in practice. When compared to BGF, our constant-time implementation of PickyFix achieves speedups of 1.18, 1.29, and 1.47 for the security levels 128, 192 and 256, respectively

    SIKE Channels

    Get PDF
    We present new side-channel attacks on SIKE, the isogeny-based candidate in the NIST PQC competition. Previous works had shown that SIKE is vulnerable to differential power analysis and pointed to coordinate randomization as an effective countermeasure. We show that coordinate randomization alone is not sufficient, as SIKE is vulnerable to a class of attacks similar to refined power analysis in elliptic curve cryptography, named zero-value attacks. We describe and confirm in the lab two such attacks leading to full key recovery, and analyze their countermeasures

    Sécurité étendue de la cryptographie fondée sur les réseaux euclidiens

    Get PDF
    Lattice-based cryptography is considered as a quantum-safe alternative for the replacement of currently deployed schemes based on RSA and discrete logarithm on prime fields or elliptic curves. It offers strong theoretical security guarantees, a large array of achievable primitives, and a competitive level of efficiency. Nowadays, in the context of the NIST post-quantum standardization process, future standards may ultimately be chosen and several new lattice-based schemes are high-profile candidates. The cryptographic research has been encouraged to analyze lattice-based cryptosystems, with a particular focus on practical aspects. This thesis is rooted in this effort.In addition to black-box cryptanalysis with classical computing resources, we investigate the extended security of these new lattice-based cryptosystems, employing a broad spectrum of attack models, e.g. quantum, misuse, timing or physical attacks. Accounting that these models have already been applied to a large variety of pre-quantum asymmetric and symmetric schemes before, we concentrate our efforts on leveraging and addressing the new features introduced by lattice structures. Our contribution is twofold: defensive, i.e. countermeasures for implementations of lattice-based schemes and offensive, i.e. cryptanalysis.On the defensive side, in view of the numerous recent timing and physical attacks, we wear our designer’s hat and investigate algorithmic protections. We introduce some new algorithmic and mathematical tools to construct provable algorithmic countermeasures in order to systematically prevent all timing and physical attacks. We thus participate in the actual provable protection of the GLP, BLISS, qTesla and Falcon lattice-based signatures schemes.On the offensive side, we estimate the applicability and complexity of novel attacks leveraging the lack of perfect correctness introduced in certain lattice-based encryption schemes to improve their performance. We show that such a compromise may enable decryption failures attacks in a misuse or quantum model. We finally introduce an algorithmic cryptanalysis tool that assesses the security of the mathematical problem underlying lattice-based schemes when partial knowledge of the secret is available. The usefulness of this new framework is demonstrated with the improvement and automation of several known classical, decryption-failure, and side-channel attacks.La cryptographie fondée sur les réseaux euclidiens représente une alternative prometteuse à la cryptographie asymétrique utilisée actuellement, en raison de sa résistance présumée à un ordinateur quantique universel. Cette nouvelle famille de schémas asymétriques dispose de plusieurs atouts parmi lesquels de fortes garanties théoriques de sécurité, un large choix de primitives et, pour certains de ses représentants, des performances comparables aux standards actuels. Une campagne de standardisation post-quantique organisée par le NIST est en cours et plusieurs schémas utilisant des réseaux euclidiens font partie des favoris. La communauté scientifique a été encouragée à les analyser car ils pourraient à l’avenir être implantés dans tous nos systèmes. L’objectif de cette thèse est de contribuer à cet effort.Nous étudions la sécurité de ces nouveaux cryptosystèmes non seulement au sens de leur résistance à la cryptanalyse en “boîte noire” à l’aide de moyens de calcul classiques, mais aussi selon un spectre plus large de modèles de sécurité, comme les attaques quantiques, les attaques supposant des failles d’utilisation, ou encore les attaques par canaux auxiliaires. Ces différents types d’attaques ont déjà été largement formalisés et étudiés par le passé pour des schémas asymétriques et symétriques pré-quantiques. Dans ce mémoire, nous analysons leur application aux nouvelles structures induites par les réseaux euclidiens. Notre travail est divisé en deux parties complémentaires : les contremesures et les attaques.La première partie regroupe nos contributions à l’effort actuel de conception de nouvelles protections algorithmiques afin de répondre aux nombreuses publications récentes d’attaques par canaux auxiliaires. Les travaux réalisés en équipe auxquels nous avons pris part on abouti à l’introduction de nouveaux outils mathématiques pour construire des contre-mesures algorithmiques, appuyées sur des preuves formelles, qui permettent de prévenir systématiquement les attaques physiques et par analyse de temps d’exécution. Nous avons ainsi participé à la protection de plusieurs schémas de signature fondés sur les réseaux euclidiens comme GLP, BLISS, qTesla ou encore Falcon.Dans une seconde partie consacrée à la cryptanalyse, nous étudions dans un premier temps de nouvelles attaques qui tirent parti du fait que certains schémas de chiffrement à clé publique ou d’établissement de clé peuvent échouer avec une faible probabilité. Ces échecs sont effectivement faiblement corrélés au secret. Notre travail a permis d’exhiber des attaques dites « par échec de déchiffrement » dans des modèles de failles d’utilisation ou des modèles quantiques. Nous avons d’autre part introduit un outil algorithmique de cryptanalyse permettant d’estimer la sécurité du problème mathématique sous-jacent lorsqu’une information partielle sur le secret est donnée. Cet outil s’est avéré utile pour automatiser et améliorer plusieurs attaques connues comme des attaques par échec de déchiffrement, des attaques classiques ou encore des attaques par canaux auxiliaires
    corecore