11 research outputs found

    Deep heterogeneous ensemble.

    Get PDF
    In recent years, deep neural networks (DNNs) have emerged as a powerful technique in many areas of machine learning. Although DNNs have achieved great breakthrough in processing images, video, audio and text, it also has some limitations such as needing a large number of labeled data for training and having a large number of parameters. Ensemble learning, meanwhile, provides a learning model by combining many different classifiers such that an ensemble of classifiers is better than using single classifier. In this study, we propose a deep ensemble framework called Deep Heterogeneous Ensemble (DHE) for supervised learning tasks. In each layer of our algorithm, the input data is passed through a feature selection method to remove irrelevant features and prevent overfitting. The cross-validation with K learning algorithms is applied to the selected data, in order to obtain the meta-data and the K base classifiers for the next layer. In this way, one layer will output the meta-data as the input data for the next layer, the base classifiers, and the indices of the selected meta-data. A combining algorithm is then applied on the meta-data of the last layer to obtain the final class prediction. Experiments on 30 datasets confirm that the proposed DHE is better than a number of well-known benchmark algorithms

    Stacking-Based Deep Neural Network: Deep Analytic Network for Pattern Classification

    Full text link
    Stacking-based deep neural network (S-DNN) is aggregated with pluralities of basic learning modules, one after another, to synthesize a deep neural network (DNN) alternative for pattern classification. Contrary to the DNNs trained end to end by backpropagation (BP), each S-DNN layer, i.e., a self-learnable module, is to be trained decisively and independently without BP intervention. In this paper, a ridge regression-based S-DNN, dubbed deep analytic network (DAN), along with its kernelization (K-DAN), are devised for multilayer feature re-learning from the pre-extracted baseline features and the structured features. Our theoretical formulation demonstrates that DAN/K-DAN re-learn by perturbing the intra/inter-class variations, apart from diminishing the prediction errors. We scrutinize the DAN/K-DAN performance for pattern classification on datasets of varying domains - faces, handwritten digits, generic objects, to name a few. Unlike the typical BP-optimized DNNs to be trained from gigantic datasets by GPU, we disclose that DAN/K-DAN are trainable using only CPU even for small-scale training sets. Our experimental results disclose that DAN/K-DAN outperform the present S-DNNs and also the BP-trained DNNs, including multiplayer perceptron, deep belief network, etc., without data augmentation applied.Comment: 14 pages, 7 figures, 11 table

    Improving deep forest by confidence screening

    Get PDF
    Most studies about deep learning are based on neural network models, where many layers of parameterized nonlinear differentiable modules are trained by backpropagation. Recently, it has been shown that deep learning can also be realized by non-differentiable modules without backpropagation training called deep forest. The developed representation learning process is based on a cascade of cascades of decision tree forests, where the high memory requirement and the high time cost inhibit the training of large models. In this paper, we propose a simple yet effective approach to improve the efficiency of deep forest. The key idea is to pass the instances with high confidence directly to the final stage rather than passing through all the levels. We also provide a theoretical analysis suggesting a means to vary the model complexity from low to high as the level increases in the cascade, which further reduces the memory requirement and time cost. Our experiments show that the proposed approach achieves highly competitive predictive performance with significantly reduced time cost and memory requirement by up to one order of magnitude

    ΠΠžΠ’Π«Π• ΠŸΠžΠ”Π₯ΠžΠ”Π« К Π ΠΠ—Π ΠΠ‘ΠžΠ’ΠšΠ• ΠΠ›Π“ΠžΠ Π˜Π’ΠœΠžΠ’ Π˜Π‘ΠšΠ£Π‘Π‘Π’Π’Π•ΠΠΠžΠ“Πž Π˜ΠΠ’Π•Π›Π›Π•ΠšΠ’Π Π’ Π”Π˜ΠΠ“ΠΠžΠ‘Π’Π˜ΠšΠ• РАКА Π›Π•Π“ΠšΠžΠ“Πž

    Get PDF
    The relevance of developing an intelligent automated diagnostic system (IADS) for lung cancer (LC) detection stems from the social significance of this disease and its leading position among all cancer diseases. Theoretically, the use of IADS is possible at a stage of screening as well as at a stage of adjusted diagnosis of LC. The recent approaches to training the IADS do not take into account the clinical and radiological classification as well as peculiarities of the LC clinical forms, which are used by the medical community. This defines difficulties and obstacles of using the available IADS. The authors are of the opinion that the closeness of a developed IADS to the Β«doctor’s logicΒ» contributes to a better reproducibility and interpretability of the IADS usage results. Most IADS described in the literature have been developed on the basis of neural networks, which have several disadvantages that affect reproducibility when using the system. This paper proposes a composite algorithm using machine learning methods such as Deep Forest and Siamese neural network, which can be regarded as a more efficient approach for dealing with a small amount of training data and optimal from the reproducibility point of view. The open datasets used for training IADS include annotated objects which in some cases are not confirmed morphologically. The paper provides a description of the LIRA dataset developed by using the diagnostic results of St. Petersburg Clinical Research Center of Specialized Types of Medical Care (Oncology), which includes only computed tomograms of patients with the verified diagnosis. The paper considers stages of the machine learning process on the basis of the shape features, of the internal structure features as well as a new developed system of differential diagnosis of LC based on the Siamese neural networks. A new approach to the feature dimension reduction is also presented in the paper, which aims more efficient and faster learning of the system.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ систСмы диагностики (Π˜ΠΠ‘Π”) Ρ€Π°ΠΊΠ° Π»Π΅Π³ΠΊΠΎΠ³ΠΎ (Π Π›) связана с ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Π·Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ этого заболСвания ΠΈ Π΅Π³ΠΎ Π»ΠΈΠ΄ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠ΅ΠΉ Π² структурС онкологичСской заболСваСмости. ВСорСтичСски ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π˜ΠΠ‘Π” Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΊΠ°ΠΊ Π½Π° этапС скрининга, Ρ‚Π°ΠΊ ΠΈ Π² ΡƒΡ‚ΠΎΡ‡Π½Π΅Π½Π½ΠΎΠΉ диагностикС Π Π›. ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΡŽ Π˜ΠΠ‘Π” Π½Π΅ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ ΠΈ особСнности клиничСских Ρ„ΠΎΡ€ΠΌ Π Π›, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ мСдицинским сообщСством. Π‘ этим связаны трудности примСнСния Ρ€Π°Π·Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… Π² настоящСС врСмя систСм. Авторы ΠΏΡ€ΠΈΠ΄Π΅Ρ€ΠΆΠΈΠ²Π°ΡŽΡ‚ΡΡ мнСния, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ Π˜ΠΠ‘Π” ΠΊ Β«Π»ΠΎΠ³ΠΈΠΊΠ΅ Π²Ρ€Π°Ρ‡Π°Β» способствуСт Π»ΡƒΡ‡ΡˆΠ΅ΠΉ воспроизводимости ΠΈ интСрпрСтируСмости Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΡ€ΠΈ Π΅Π΅ использовании. Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ описанных Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ Π˜ΠΠ‘Π” созданы Π½Π° основС Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ рядом нСдостатков, Π²Π»ΠΈΡΡŽΡ‰ΠΈΡ… Π½Π° Π²ΠΎΡΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ использовании систСмы. Данная Ρ€Π°Π±ΠΎΡ‚Π° ΠΎΡ‚Ρ€Π°ΠΆΠ°Π΅Ρ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² машинного обучСния, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ Π³Π»ΡƒΠ±ΠΎΠΊΠΈΠΉ лСс ΠΈ сиамская нСйронная ΡΠ΅Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ являСтся Π±ΠΎΠ»Π΅Π΅ эффСктивным ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΈ ΠΌΠ°Π»ΠΎΠΉ Π²Ρ‹Π±ΠΎΡ€ΠΊΠ΅ ΠΎΠ±ΡƒΡ‡Π°ΡŽΡ‰ΠΈΡ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния воспроизводимости. ΠžΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Π΅ Π±Π°Π·Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ…, примСняСмыС ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π˜ΠΠ‘Π”, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ Ρ€Π°Π·ΠΌΠ΅Ρ‡Π΅Π½Π½Ρ‹Π΅, Π½ΠΎ Π² рядС случаСв Π½Π΅ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π½Ρ‹Π΅ морфологичСски Π½Π°Ρ…ΠΎΠ΄ΠΊΠΈ. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ приводится описаниС Π±Π°Π·Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ… LIRA, созданной Π½Π° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅ Π‘Π°Π½ΠΊΡ‚-ΠŸΠ΅Ρ‚Π΅Ρ€Π±ΡƒΡ€Π³ΡΠΊΠΎΠ³ΠΎ клиничСского Π½Π°ΡƒΡ‡Π½ΠΎ-практичСского Ρ†Π΅Π½Ρ‚Ρ€Π° спСциализированных Π²ΠΈΠ΄ΠΎΠ² мСдицинской ΠΏΠΎΠΌΠΎΡ‰ΠΈ (онкологичСский), которая Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹Π΅ Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π²Π΅Ρ€ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π΄ΠΈΠ°Π³Π½ΠΎΠ·ΠΎΠΌ. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ описаны этапы машинного обучСния ΠΏΠΎ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ Ρ„ΠΎΡ€ΠΌΡ‹, Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ структуры, Π° Ρ‚Π°ΠΊΠΆΠ΅ новая разработанная Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π° Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ диагностики ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π° основС сиамских Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй. Π’Π°ΠΊΠΆΠ΅ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ способ пониТСния размСрности Π΄Π°Π½Π½Ρ‹Ρ… для Π±ΠΎΠ»Π΅Π΅ эффСктивного ΠΈ быстрого обучСния систСмы
    corecore