1,387 research outputs found

    Analysis of distance metrics in content-based image retrieval using statistical quantized histogram texture features in the DCT domain

    Get PDF
    AbstractThe effective content-based image retrieval (CBIR) needs efficient extraction of low level features like color, texture and shapes for indexing and fast query image matching with indexed images for the retrieval of similar images. Features are extracted from images in pixel and compressed domains. However, now most of the existing images are in compressed formats like JPEG using DCT (discrete cosine transformation). In this paper we study the issues of efficient extraction of features and the effective matching of images in the compressed domain. In our method the quantized histogram statistical texture features are extracted from the DCT blocks of the image using the significant energy of the DC and the first three AC coefficients of the blocks. For the effective matching of the image with images, various distance metrics are used to measure similarities using texture features. The analysis of the effective CBIR is performed on the basis of various distance metrics in different number of quantization bins. The proposed method is tested by using Corel image database and the experimental results show that our method has robust image retrieval for various distance metrics with different histogram quantization in a compressed domain

    Object detection and activity recognition in digital image and video libraries

    Get PDF
    This thesis is a comprehensive study of object-based image and video retrieval, specifically for car and human detection and activity recognition purposes. The thesis focuses on the problem of connecting low level features to high level semantics by developing relational object and activity presentations. With the rapid growth of multimedia information in forms of digital image and video libraries, there is an increasing need for intelligent database management tools. The traditional text based query systems based on manual annotation process are impractical for today\u27s large libraries requiring an efficient information retrieval system. For this purpose, a hierarchical information retrieval system is proposed where shape, color and motion characteristics of objects of interest are captured in compressed and uncompressed domains. The proposed retrieval method provides object detection and activity recognition at different resolution levels from low complexity to low false rates. The thesis first examines extraction of low level features from images and videos using intensity, color and motion of pixels and blocks. Local consistency based on these features and geometrical characteristics of the regions is used to group object parts. The problem of managing the segmentation process is solved by a new approach that uses object based knowledge in order to group the regions according to a global consistency. A new model-based segmentation algorithm is introduced that uses a feedback from relational representation of the object. The selected unary and binary attributes are further extended for application specific algorithms. Object detection is achieved by matching the relational graphs of objects with the reference model. The major advantages of the algorithm can be summarized as improving the object extraction by reducing the dependence on the low level segmentation process and combining the boundary and region properties. The thesis then addresses the problem of object detection and activity recognition in compressed domain in order to reduce computational complexity. New algorithms for object detection and activity recognition in JPEG images and MPEG videos are developed. It is shown that significant information can be obtained from the compressed domain in order to connect to high level semantics. Since our aim is to retrieve information from images and videos compressed using standard algorithms such as JPEG and MPEG, our approach differentiates from previous compressed domain object detection techniques where the compression algorithms are governed by characteristics of object of interest to be retrieved. An algorithm is developed using the principal component analysis of MPEG motion vectors to detect the human activities; namely, walking, running, and kicking. Object detection in JPEG compressed still images and MPEG I frames is achieved by using DC-DCT coefficients of the luminance and chrominance values in the graph based object detection algorithm. The thesis finally addresses the problem of object detection in lower resolution and monochrome images. Specifically, it is demonstrated that the structural information of human silhouettes can be captured from AC-DCT coefficients

    Study of a imaging indexing technique in JPEG Compressed domain

    Get PDF
    In our computers all stored images are in JPEG compressed format even when we download an image from the internet that is also in JPEG compressed format, so it is very essential that we should have content based image indexing its retrieval conducted directly in the compressed domain. In this paper we used a partial decoding algorithm for all the JPEG compressed images to index the images directly in the JPEG compressed domain. We also compare the performance of the approaches in DCT domain and the original images in the pixel domain. This technology will prove preciously in those applications where fast image key generation is required. Image and audio techniques are very important in the multimedia applications. In this paper, we comprise an analytical review of the compressed domain indexing techniques, in which we used transform domain techniques such as Fourier transform, karhunen-loeve transform, Cosine transform, subbands and spatial domain techniques, which are using vector quantization and fractrals. So after comparing other research papers we come on the conclusion that when we have to compress the original image then we should convert the image by using the 8X8 pixels of image blocks and after that convert into DCT form and so on. So after doing research on the same concept we can divide image pixels blocks into 4X4X4 blocks of pixels. So by doing the same we can compress the original image by using the steps further

    CONTENT-BASED IMAGE RETRIEVAL USING ENHANCED HYBRID METHODS WITH COLOR AND TEXTURE FEATURES

    Get PDF
    Content-based image retrieval (CBIR) automatically retrieves similar images to the query image by using the visual contents (features) of the image like color, texture and shape. Effective CBIR is based on efficient feature extraction for indexing and on effective query image matching with the indexed images for retrieval. However the main issue in CBIR is that how to extract the features efficiently because the efficient features describe well the image and they are used efficiently in matching of the images to get robust retrieval. This issue is the main inspiration for this thesis to develop a hybrid CBIR with high performance in the spatial and frequency domains. We propose various approaches, in which different techniques are fused to extract the statistical color and texture features efficiently in both domains. In spatial domain, the statistical color histogram features are computed using the pixel distribution of the Laplacian filtered sharpened images based on the different quantization schemes. However color histogram does not provide the spatial information. The solution is by using the histogram refinement method in which the statistical features of the regions in histogram bins of the filtered image are extracted but it leads to high computational cost, which is reduced by dividing the image into the sub-blocks of different sizes, to extract the color and texture features. To improve further the performance, color and texture features are combined using sub-blocks due to the less computational cos
    • …
    corecore