5,069 research outputs found

    Entanglement Witnesses from Single-Particle Interference

    Full text link
    We describe a general method of realizing entanglement witnesses in terms of the interference pattern of a single quantum probe. After outlining the principle, we discuss specific realizations both with electrons in mesoscopic Aharonov-Bohm rings and with photons in standard Young's double-slit or coherent-backscattering interferometers.Comment: 5 pages, 3 figures, epl2, uses pstricks.st

    Threshold Ring Signature Scheme from Cryptographic Group Actions

    Get PDF

    Separable and anonymous identity-based key issuing

    Get PDF
    In identity-based (ID-based) cryptosystems, a local registration authority (LRA) is responsible for authentication of users while the key generation center (KGC) is responsible for computing and sending the private keys to users and therefore, a secure channel is required. For privacy-oriented applications, it is important to keep in secret whether the private key corresponding to a certain identity has been requested. All of the existing ID-based key issuing schemes have not addressed this anonymity issue. Besides, the separation of duties of LRA and KGC has not been discussed as well. We propose a novel separable and anonymous ID-based key issuing scheme without secure channel. Our protocol supports the separation of duties between LRA and KGC. The private key computed by the KGC can be sent to the user in an encrypted form such that only the legitimate key requester authenticated by LRA can decrypt it, and any eavesdropper cannot know the identity corresponding to the secret key. © 2005 IEEE.published_or_final_versio

    Many-body effects on the ρxx\rho_{xx} ringlike structures in two-subband wells

    Full text link
    The longitudinal resistivity ρxx\rho_{xx} of two-dimensional electron gases formed in wells with two subbands displays ringlike structures when plotted in a density--magnetic-field diagram, due to the crossings of spin-split Landau levels (LLs) from distinct subbands. Using spin density functional theory and linear response, we investigate the shape and spin polarization of these structures as a function of temperature and magnetic-field tilt angle. We find that (i) some of the rings "break" at sufficiently low temperatures due to a quantum Hall ferromagnetic phase transition, thus exhibiting a high degree of spin polarization (50\sim 50 %) within, consistent with the NMR data of Zhang \textit{et al.} [Phys. Rev. Lett. {\bf 98}, 246802 (2007)], and (ii) for increasing tilting angles the interplay between the anticrossings due to inter-LL couplings and the exchange-correlation (XC) effects leads to a collapse of the rings at some critical angle θc\theta_c, in agreement with the data of Guo \textit{et al.} [Phys. Rev. B {\bf 78}, 233305 (2008)].Comment: 4 pages, 3 figure

    Quantum entanglement and disentanglement of multi-atom systems

    Full text link
    We present a review of recent research on quantum entanglement, with special emphasis on entanglement between single atoms, processing of an encoded entanglement and its temporary evolution. Analysis based on the density matrix formalism are described. We give a simple description of the entangling procedure and explore the role of the environment in creation of entanglement and in disentanglement of atomic systems. A particular process we will focus on is spontaneous emission, usually recognized as an irreversible loss of information and entanglement encoded in the internal states of the system. We illustrate some certain circumstances where this irreversible process can in fact induce entanglement between separated systems. We also show how spontaneous emission reveals a competition between the Bell states of a two qubit system that leads to the recently discovered "sudden" features in the temporal evolution of entanglement. An another problem illustrated in details is a deterministic preparation of atoms and atomic ensembles in long-lived stationary squeezed states and entangled cluster states. We then determine how to trigger the evolution of the stable entanglement and also address the issue of a steered evolution of entanglement between desired pairs of qubits that can be achieved simply by varying the parameters of a given system.Comment: Review articl

    Bare vs effective pairing forces. A microscopic finite-range interaction for HFB calculations in coordinate space

    Full text link
    We propose a microscopic effective interaction to treat pairing correlations in the 1S0^{1}S_0 channel. It is introduced by recasting the gap equation written in terms of the bare force into a fully equivalent pairing problem. Within this approach, the proposed interaction reproduces the pairing properties provided by the realistic AV18AV18 force very accurately. Written in the canonical basis of the actual Bogolyubov transformation, the force takes the form of an off-shell in-medium two-body matrix in the superfluid phase multiplied by a BCS occupation number 2ρm2 \rho_{m}. This interaction is finite ranged, non local, total-momentum dependent and density dependent. The factor 2ρm2 \rho_{m} emerging from the recast of the gap equation provides a natural cut-off and makes zero-range approximations of the effective vertex meaningful. Performing such an approximation, the roles of the range and of the density dependence of the interaction can be disentangled. The isoscalar and isovector density-dependences derived ab-initio provide the pairing force with a strong predictive power when extrapolated toward the drip-lines. Although finite ranged and non local, the proposed interaction makes HFB calculations of finite nuclei in coordinate space tractable. Through the two-basis method, its computational cost is of the same order as for a zero-range force.Comment: 43 pages, 13 figures. Published versio

    Understanding the Fano Resonance : through Toy Models

    Full text link
    The Fano Resonance, involving the mixing between a quasi-bound `discrete' state of an inelastic channel lying in the continuum of scattering states belonging to the elastic channel, has several subtle features. The underlying ideas have recently attracted attention in connection with interference effects in quantum wires and mesoscopic transport phenomena. Simple toy models are provided in the present study to illustrate the basics of the Fano resonance in a simple and tractable setting.Comment: 17 pages, 1 figur

    Inspection System And Method For Bond Detection And Validation Of Surface Mount Devices Using Sensor Fusion And Active Perception

    Get PDF
    A hybrid surface mount component inspection system which includes both vision and infrared inspection techniques to determine the presence of surface mount components on a printed wiring board, and the quality of solder joints of surface mount components on printed wiring boards by using data level sensor fusion to combine data from two infrared sensors to obtain emissivity independent thermal signatures of solder joints, and using feature level sensor fusion with active perception to assemble and process inspection information from any number of sensors to determine characteristic feature sets of different defect classes to classify solder defects.Georgia Tech Research Corporatio
    corecore