17,246 research outputs found

    Exploring the characteristics of issue-related behaviors in GitHub using visualization techniques

    Get PDF

    Graph Summarization

    Full text link
    The continuous and rapid growth of highly interconnected datasets, which are both voluminous and complex, calls for the development of adequate processing and analytical techniques. One method for condensing and simplifying such datasets is graph summarization. It denotes a series of application-specific algorithms designed to transform graphs into more compact representations while preserving structural patterns, query answers, or specific property distributions. As this problem is common to several areas studying graph topologies, different approaches, such as clustering, compression, sampling, or influence detection, have been proposed, primarily based on statistical and optimization methods. The focus of our chapter is to pinpoint the main graph summarization methods, but especially to focus on the most recent approaches and novel research trends on this topic, not yet covered by previous surveys.Comment: To appear in the Encyclopedia of Big Data Technologie

    Unsupervised User Stance Detection on Twitter

    Full text link
    We present a highly effective unsupervised framework for detecting the stance of prolific Twitter users with respect to controversial topics. In particular, we use dimensionality reduction to project users onto a low-dimensional space, followed by clustering, which allows us to find core users that are representative of the different stances. Our framework has three major advantages over pre-existing methods, which are based on supervised or semi-supervised classification. First, we do not require any prior labeling of users: instead, we create clusters, which are much easier to label manually afterwards, e.g., in a matter of seconds or minutes instead of hours. Second, there is no need for domain- or topic-level knowledge either to specify the relevant stances (labels) or to conduct the actual labeling. Third, our framework is robust in the face of data skewness, e.g., when some users or some stances have greater representation in the data. We experiment with different combinations of user similarity features, dataset sizes, dimensionality reduction methods, and clustering algorithms to ascertain the most effective and most computationally efficient combinations across three different datasets (in English and Turkish). We further verified our results on additional tweet sets covering six different controversial topics. Our best combination in terms of effectiveness and efficiency uses retweeted accounts as features, UMAP for dimensionality reduction, and Mean Shift for clustering, and yields a small number of high-quality user clusters, typically just 2--3, with more than 98\% purity. The resulting user clusters can be used to train downstream classifiers. Moreover, our framework is robust to variations in the hyper-parameter values and also with respect to random initialization

    Comprehensive Review of Opinion Summarization

    Get PDF
    The abundance of opinions on the web has kindled the study of opinion summarization over the last few years. People have introduced various techniques and paradigms to solving this special task. This survey attempts to systematically investigate the different techniques and approaches used in opinion summarization. We provide a multi-perspective classification of the approaches used and highlight some of the key weaknesses of these approaches. This survey also covers evaluation techniques and data sets used in studying the opinion summarization problem. Finally, we provide insights into some of the challenges that are left to be addressed as this will help set the trend for future research in this area.unpublishednot peer reviewe
    • …
    corecore