15,751 research outputs found

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    QUALITY OF SERVICE BASED WEB SERVICE SELECTION: AN EVALUATION OF TECHNIQUES

    Get PDF
    In service oriented computing, web services are the basic construct that aims to facilitate building of business application in a more flexible and interoperable manner for enterprise collaboration. One of the most promising advantages of web service technology is the possibility of creating added-value services by combining existing ones. A key step for composing and executing services lies in the selection of the individual services to use. Much attention has been devoted to appropriate selection of service functionalities, but also the non-functional properties of the services play a key role. A web service selection technique must take as much as possible the important influencing aspects into account to the selection processes in order to minimize the selection efforts. This paper evaluates several web service selection techniques published in literature with the focus on their contributions to web service selection. The evaluation results may be used as a basis for improving web service selection techniques that may simplify the selection tasks

    Sensor Search Techniques for Sensing as a Service Architecture for The Internet of Things

    Get PDF
    The Internet of Things (IoT) is part of the Internet of the future and will comprise billions of intelligent communicating "things" or Internet Connected Objects (ICO) which will have sensing, actuating, and data processing capabilities. Each ICO will have one or more embedded sensors that will capture potentially enormous amounts of data. The sensors and related data streams can be clustered physically or virtually, which raises the challenge of searching and selecting the right sensors for a query in an efficient and effective way. This paper proposes a context-aware sensor search, selection and ranking model, called CASSARAM, to address the challenge of efficiently selecting a subset of relevant sensors out of a large set of sensors with similar functionality and capabilities. CASSARAM takes into account user preferences and considers a broad range of sensor characteristics, such as reliability, accuracy, location, battery life, and many more. The paper highlights the importance of sensor search, selection and ranking for the IoT, identifies important characteristics of both sensors and data capture processes, and discusses how semantic and quantitative reasoning can be combined together. This work also addresses challenges such as efficient distributed sensor search and relational-expression based filtering. CASSARAM testing and performance evaluation results are presented and discussed.Comment: IEEE sensors Journal, 2013. arXiv admin note: text overlap with arXiv:1303.244

    Context-driven progressive enhancement of mobile web applications: a multicriteria decision-making approach

    Get PDF
    Personal computing has become all about mobile and embedded devices. As a result, the adoption rate of smartphones is rapidly increasing and this trend has set a need for mobile applications to be available at anytime, anywhere and on any device. Despite the obvious advantages of such immersive mobile applications, software developers are increasingly facing the challenges related to device fragmentation. Current application development solutions are insufficiently prepared for handling the enormous variety of software platforms and hardware characteristics covering the mobile eco-system. As a result, maintaining a viable balance between development costs and market coverage has turned out to be a challenging issue when developing mobile applications. This article proposes a context-aware software platform for the development and delivery of self-adaptive mobile applications over the Web. An adaptive application composition approach is introduced, capable of autonomously bypassing context-related fragmentation issues. This goal is achieved by incorporating and validating the concept of fine-grained progressive application enhancements based on a multicriteria decision-making strategy

    Four-view analysis of the perceived organisational changes required to implement micro-blogging during product conceptualisation for capturing consumer conversations

    Get PDF
    Global manufacturing output continues to grow, creating the need for the development of new products and innovative enhancements to existing ranges. With the advancement of consumer social media sites, such as Facebook and Twitter.com, companies today are able to search for and utilise knowledge shared in online consumer conversations. Product designers may benefit from these discussions, which often focus on concerns, new ideas and/or product enhancements, thereby enriching the innovative process of New Product Development (NPD). The Web 2.0-based activity of micro-blogging has been researched widely, with scholars identifying both benefits and weaknesses for its use in general business activities. However, its application, particularly for capturing online consumer conversations for product conceptualisation and idea generation, is limited and rarely acknowledged. This paper aims to address this deficiency in literature, extending the previous research of Evans et al. [1], by examining how micro-blogging sites may be utilised during the product conceptualisation phase of NPD to capture consumer knowledge from micro-blogged conversations. Through the conduction of a face-to-face dual-moderated focus group, with fifteen employees of a small UK-based sports equipment manufacturer, we create a four-view model to identify the perceived organisational, process, personnel and technological changes required to embed micro-blogging into the product conceptualisation phase. Findings suggest that manufacturing companies would welcome the introduction of micro-blogging into NPD and view it as an opportunity to engage on a more personal level with current and potential customers and capture consumer feedback typically uncaptured by formal methods. Certain questions were raised, however, relating to interoperability with current systems, automated processes for content analysis and over reliance on manual engagement by staff members

    Bid-Centric Cloud Service Provisioning

    Full text link
    Bid-centric service descriptions have the potential to offer a new cloud service provisioning model that promotes portability, diversity of choice and differentiation between providers. A bid matching model based on requirements and capabilities is presented that provides the basis for such an approach. In order to facilitate the bidding process, tenders should be specified as abstractly as possible so that the solution space is not needlessly restricted. To this end, we describe how partial TOSCA service descriptions allow for a range of diverse solutions to be proposed by multiple providers in response to tenders. Rather than adopting a lowest common denominator approach, true portability should allow for the relative strengths and differentiating features of cloud service providers to be applied to bids. With this in mind, we describe how TOSCA service descriptions could be augmented with additional information in order to facilitate heterogeneity in proposed solutions, such as the use of coprocessors and provider-specific services

    Privacy-knowledge modeling for the Internet of Things: a look back

    Get PDF
    Together, the Internet of Things (IoT) and cloud computing give us the ability to gather, process, and even trade data to better understand users' behaviors, habits, and preferences. However, future IoT applications must address the significant potential threats to privacy posed by such knowledge-discovery activities

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea
    • …
    corecore