17,294 research outputs found

    A Semi-Potential for Finite and Infinite Games in Extensive Form

    Get PDF
    We consider a dynamical approach to game in extensive forms. By restricting the convertibility relation over strategy profiles, we obtain a semi-potential (in the sense of Kukushkin), and we show that in finite games the corresponding restriction of better-response dynamics will converge to a Nash equilibrium in quadratic (finite) time. Convergence happens on a per-player basis, and even in the presence of players with cyclic preferences, the players with acyclic preferences will stabilize. Thus, we obtain a candidate notion for rationality in the presence of irrational agents. Moreover, the restriction of convertibility can be justified by a conservative updating of beliefs about the other players strategies.For infinite games in extensive form we can retain convergence to a Nash equilibrium (in some sense), if the preferences are given by continuous payoff functions; or obtain a transfinite convergence if the outcome sets of the game are Δ02-sets

    Dynamics and Coalitions in Sequential Games

    Full text link
    We consider N-player non-zero sum games played on finite trees (i.e., sequential games), in which the players have the right to repeatedly update their respective strategies (for instance, to improve the outcome wrt to the current strategy profile). This generates a dynamics in the game which may eventually stabilise to a Nash Equilibrium (as with Kukushkin's lazy improvement), and we argue that it is interesting to study the conditions that guarantee such a dynamics to terminate. We build on the works of Le Roux and Pauly who have studied extensively one such dynamics, namely the Lazy Improvement Dynamics. We extend these works by first defining a turn-based dynamics, proving that it terminates on subgame perfect equilibria, and showing that several variants do not terminate. Second, we define a variant of Kukushkin's lazy improvement where the players may now form coalitions to change strategies. We show how properties of the players' preferences on the outcomes affect the termination of this dynamics, and we thereby characterise classes of games where it always terminates (in particular two-player games).Comment: In Proceedings GandALF 2017, arXiv:1709.0176

    An Efficient Policy Iteration Algorithm for Dynamic Programming Equations

    Full text link
    We present an accelerated algorithm for the solution of static Hamilton-Jacobi-Bellman equations related to optimal control problems. Our scheme is based on a classic policy iteration procedure, which is known to have superlinear convergence in many relevant cases provided the initial guess is sufficiently close to the solution. In many cases, this limitation degenerates into a behavior similar to a value iteration method, with an increased computation time. The new scheme circumvents this problem by combining the advantages of both algorithms with an efficient coupling. The method starts with a value iteration phase and then switches to a policy iteration procedure when a certain error threshold is reached. A delicate point is to determine this threshold in order to avoid cumbersome computation with the value iteration and, at the same time, to be reasonably sure that the policy iteration method will finally converge to the optimal solution. We analyze the methods and efficient coupling in a number of examples in dimension two, three and four illustrating its properties

    On consistent solutions for strategic games

    Get PDF
    Nash equilibrium;game theory

    Regular Boardgames

    Full text link
    We propose a new General Game Playing (GGP) language called Regular Boardgames (RBG), which is based on the theory of regular languages. The objective of RBG is to join key properties as expressiveness, efficiency, and naturalness of the description in one GGP formalism, compensating certain drawbacks of the existing languages. This often makes RBG more suitable for various research and practical developments in GGP. While dedicated mostly for describing board games, RBG is universal for the class of all finite deterministic turn-based games with perfect information. We establish foundations of RBG, and analyze it theoretically and experimentally, focusing on the efficiency of reasoning. Regular Boardgames is the first GGP language that allows efficient encoding and playing games with complex rules and with large branching factor (e.g.\ amazons, arimaa, large chess variants, go, international checkers, paper soccer).Comment: AAAI 201

    One for all, all for one---von Neumann, Wald, Rawls, and Pareto

    Full text link
    Applications of the maximin criterion extend beyond economics to statistics, computer science, politics, and operations research. However, the maximin criterion---be it von Neumann's, Wald's, or Rawls'---draws fierce criticism due to its extremely pessimistic stance. I propose a novel concept, dubbed the optimin criterion, which is based on (Pareto) optimizing the worst-case payoffs of tacit agreements. The optimin criterion generalizes and unifies results in various fields: It not only coincides with (i) Wald's statistical decision-making criterion when Nature is antagonistic, (ii) the core in cooperative games when the core is nonempty, though it exists even if the core is empty, but it also generalizes (iii) Nash equilibrium in nn-person constant-sum games, (iv) stable matchings in matching models, and (v) competitive equilibrium in the Arrow-Debreu economy. Moreover, every Nash equilibrium satisfies the optimin criterion in an auxiliary game
    • …
    corecore