1,223 research outputs found

    The Conference Review Process

    Get PDF
    This presentation is for students on the 3rd year ECS Multimedia course where students run their own conference, and submit and review papers. In this presentation we explain the academic review process, look at the structure of a review, and give some examples of positive and negative reviews

    prototypical implementations

    Get PDF
    In this technical report, we present prototypical implementations of innovative tools and methods developed according to the working plan outlined in Technical Report TR-B-09-05 [23]. We present an ontology modularization and integration framework and the SVoNt server, the server-side end of an SVN- based versioning system for ontologies in the Corporate Ontology Engineering pillar. For the Corporate Semantic Collaboration pillar, we present the prototypical implementation of a light-weight ontology editor for non-experts and an ontology based expert finder system. For the Corporate Semantic Search pillar, we present a prototype for algorithmic extraction of relations in folksonomies, a tool for trend detection using a semantic analyzer, a tool for automatic classification of web documents using Hidden Markov models, a personalized semantic recommender for multimedia content, and a semantic search assistant developed in co-operation with the Museumsportal Berlin. The prototypes complete the next milestone on the path to an integral Cor- porate Semantic Web architecture based on the three pillars Corporate Ontol- ogy Engineering, Corporate Semantic Collaboration, and Corporate Semantic Search, as envisioned in [23]

    TREE-D-SEEK: A Framework for Retrieving Three-Dimensional Scenes

    Get PDF
    In this dissertation, a strategy and framework for retrieving 3D scenes is proposed. The strategy is to retrieve 3D scenes based on a unified approach for indexing content from disparate information sources and information levels. The TREE-D-SEEK framework implements the proposed strategy for retrieving 3D scenes and is capable of indexing content from a variety of corpora at distinct information levels. A semantic annotation model for indexing 3D scenes in the TREE-D-SEEK framework is also proposed. The semantic annotation model is based on an ontology for rapid prototyping of 3D virtual worlds. With ongoing improvements in computer hardware and 3D technology, the cost associated with the acquisition, production and deployment of 3D scenes is decreasing. As a consequence, there is a need for efficient 3D retrieval systems for the increasing number of 3D scenes in corpora. An efficient 3D retrieval system provides several benefits such as enhanced sharing and reuse of 3D scenes and 3D content. Existing 3D retrieval systems are closed systems and provide search solutions based on a predefined set of indexing and matching algorithms Existing 3D search systems and search solutions cannot be customized for specific requirements, type of information source and information level. In this research, TREE-D-SEEK—an open, extensible framework for retrieving 3D scenes—is proposed. The TREE-D-SEEK framework is capable of retrieving 3D scenes based on indexing low level content to high-level semantic metadata. The TREE-D-SEEK framework is discussed from a software architecture perspective. The architecture is based on a common process flow derived from indexing disparate information sources. Several indexing and matching algorithms are implemented. Experiments are conducted to evaluate the usability and performance of the framework. Retrieval performance of the framework is evaluated using benchmarks and manually collected corpora. A generic, semantic annotation model is proposed for indexing a 3D scene. The primary objective of using the semantic annotation model in the TREE-D-SEEK framework is to improve retrieval relevance and to support richer queries within a 3D scene. The semantic annotation model is driven by an ontology. The ontology is derived from a 3D rapid prototyping framework. The TREE-D-SEEK framework supports querying by example, keyword based and semantic annotation based query types for retrieving 3D scenes

    A Framework for the Integration of Multimedia Data.

    Full text link

    Generic adaptation framework for unifying adaptive web-based systems

    Get PDF
    The Generic Adaptation Framework (GAF) research project first and foremost creates a common formal framework for describing current and future adaptive hypermedia (AHS) and adaptive webbased systems in general. It provides a commonly agreed upon taxonomy and a reference model that encompasses the most general architectures of the present and future, including conventional AHS, and different types of personalization-enabling systems and applications such as recommender systems (RS) personalized web search, semantic web enabled applications used in personalized information delivery, adaptive e-Learning applications and many more. At the same time GAF is trying to bring together two (seemingly not intersecting) views on the adaptation: a classical pre-authored type, with conventional domain and overlay user models and data-driven adaptation which includes a set of data mining, machine learning and information retrieval tools. To bring these research fields together we conducted a number GAF compliance studies including RS, AHS, and other applications combining adaptation, recommendation and search. We also performed a number of real systems’ case-studies to prove the point and perform a detailed analysis and evaluation of the framework. Secondly it introduces a number of new ideas in the field of AH, such as the Generic Adaptation Process (GAP) which aligns with a layered (data-oriented) architecture and serves as a reference adaptation process. This also helps to understand the compliance features mentioned earlier. Besides that GAF deals with important and novel aspects of adaptation enabling and leveraging technologies such as provenance and versioning. The existence of such a reference basis should stimulate AHS research and enable researchers to demonstrate ideas for new adaptation methods much more quickly than if they had to start from scratch. GAF will thus help bootstrap any adaptive web-based system research, design, analysis and evaluation

    Ontology-based domain modelling for consistent content change management

    Get PDF
    Ontology-based modelling of multi-formatted software application content is a challenging area in content management. When the number of software content unit is huge and in continuous process of change, content change management is important. The management of content in this context requires targeted access and manipulation methods. We present a novel approach to deal with model-driven content-centric information systems and access to their content. At the core of our approach is an ontology-based semantic annotation technique for diversely formatted content that can improve the accuracy of access and systems evolution. Domain ontologies represent domain-specific concepts and conform to metamodels. Different ontologies - from application domain ontologies to software ontologies - capture and model the different properties and perspectives on a software content unit. Interdependencies between domain ontologies, the artifacts and the content are captured through a trace model. The annotation traces are formalised and a graph-based system is selected for the representation of the annotation traces

    Supporting learning object versioning

    Get PDF
    A current popular paradigm in e-learning is that of the "learning object". Broadly de-fined, a learning object is a reusable piece of educational material intended to be strung together with other learning objects to form larger educational units such as activities, lessons, or whole courses. This aggregating of learning objects together is a recursive process – small objects can be combined to form medium sized objects, medium sized objects can be combined to form large objects, and so on. Once objects have been com-bined appropriately, they are generally serialized into content packages, and deployed into an online course for delivery to learners.Learning objects are often stored in distributed and decentralized repositories throughout the Internet. This provides unique challenges when managing the history of such an ob-ject, as traditional versioning techniques (e.g. CVS, RCS, etc.) rely on centralized man-agement. These challenges have been largely ignored by the educational technology community, but are becoming more important as sharing of learning objects increases.This thesis explores these issues by providing a formal version model for learning ob-jects, a set of data bindings for this model, and a prototype authoring environment which implements these bindings. In addition, the work explores the potential benefits of ver-sion control by implementing a visualization of a learning object revision tree. This visualization includes the relationship between objects and their aggregates, the struc-tural history of an object, and the semantic changes that an object has undergone
    corecore