14,580 research outputs found

    Utility-Based Mechanism for Structural Self-Organization in Service-Oriented MAS

    Full text link
    Structural relations established among agents influence the performance of decentralized service discovery process in multiagent systems. Moreover, distributed systems should be able to adapt their structural relations to changes in environmental conditions. In this article, we present a service-oriented multiagent systems, where agents initially self-organize their structural relations based on the similarity of their services. During the service discovery process, agents integrate a mechanism that facilitates the self-organization of their structural relations to adapt the structure of the system to the service demand. This mechanism facilitates the task of decentralized service discovery and improves its performance. Each agent has local knowledge about its direct neighbors and the queries received during discovery processes. With this information, an agent is able to analyze its structural relations and decide when it is more appropriate to modify its direct neighbors and select the most suitable acquaintances to replace them. The experimental evaluation shows how this self-organization mechanism improves the overall performance of the service discovery process in the system when the service demand changesThis work is partially supported by the Spanish Ministry of Science and Innovation through grants CSD2007-0022 (CONSOLIDER-INGENIO 2010), TIN2012-36586-C03-01, TIN2012-36586-C03-01, TIN2012-36586-C03-02, PROMETEOII/2013/019, and FPU grant AP-2008-00601 awarded to E. Del Val.Del Val Noguera, E.; Rebollo Pedruelo, M.; Vasirani, M.; FernĂĄndez, A. (2014). Utility-Based Mechanism for Structural Self-Organization in Service-Oriented MAS. ACM Transactions on Autonomous and Adaptive Systems. 9(3):1-24. https://doi.org/10.1145/2651423S12493Sherief Abdallah and Victor Lesser. 2007. Multiagent reinforcement learning and self-organization in a network of agents. In Proceedings of the 6th International Conference on Autonomous Agents and Multiagent Systems. 172--179.Lada A. Adamic and Bernardo A. Huberman. 2002. Zipf’s law and the Internet. Glottometrics 3, 143--150.Muntasir Al-Asfoor, Brendan Neville, and Maria Fasli. 2012. Heuristic resource search in a self-organised distributed multi agent system. In Proceedings of the 6th International Workshop on Self-Organizing Systems. 84--89.Mathieu Aquin, Salman Elahi, and Enrico Motta. 2010. Personal monitoring of Web information exchange: Towards Web lifelogging. In Proceedings of the Web Science Conference.Ulrich Basters and Matthias Klusch. 2006. RS2D: Fast adaptive search for semantic Web services in unstructured p2p networks. In Proceedings of the International Semantic Web Conference. 87--100.Umesh Bellur and Roshan Kulkarni. 2007. Improved matchmaking algorithm for semantic Web services based on bipartite graph matching. In Proceedings of the International Semantic Web Conference. 86--93.Devis Bianchini, Valeria De Antonellis, and Michele Melchiori. 2009. Service-based semantic search in p2p systems. In Proceedings of the European Conference on Web Services. 7--16.Bartosz Biskupski, Jim Dowling, and Jan Sacha. 2007. Properties and mechanisms of self-organizing MANET and P2P systems. ACM Transactions on Autonomous and Adaptive Systems 2, 1, 1--34.Alberto Blanc, Yi-Kai Liu, and Amin Vahdat. 2005. Designing incentives for peer-to-peer routing. In Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies. 374--385.Michael Bowling and Manuela Veloso. 2002. Multiagent learning using a variable learning rate. Artificial Intelligence 136, 215--250.Frances M. T. Brazier, Jeffrey O. Kephart, H. Van Dyke Parunak, and Michael N. Huhns. 2009. Agents and service-oriented computing for autonomic computing: A research agenda. IEEE Internet Computing 13, 3, 82--87.Tyson Condie, Sepandar D. Kamvar, and Hector Garcia-Molina. 2004. Adaptive peer-to-peer topologies. In Proceedings of the 4th International Conference on Peer-to-Peer Computing. 53--62.Arturo Crespo and Hector Garcia-Molina. 2002. Routing indices for peer-to-peer systems. In Proceedings of the 22nd International Conference on Distributed Computing Systems. 23--32.Elena Del Val, Natalia Criado, Carlos Carrascosa, Vicente Julian, Miguel Rebollo, Estefania Argente, and Vicente Botti. 2010. THOMAS: A service-oriented framework for virtual organizations. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’10). 1631--1632.Elena Del Val, Miguel Rebollo, and Vicente Botti. 2011. Introducing homophily to improve semantic service search in a self-adaptive system. In Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems. 1241--1242.Elena Del Val, Miguel Rebollo, and Vicente Botti. 2012a. Enhancing decentralized service discovery in open service-oriented multi-agent systems. Autonomous Agents and Multi-Agent Systems 28, 1, 1--30.Elena Del Val, Miguel Rebollo, and Vicente Botti. 2012b. Promoting cooperation in service-oriented MAS through social plasticity and incentives. Journal of Systems and Software 86, 2, 520--537.Gianni Di Caro, Frederick Ducatelle, and Luca Maria Gambardella. 2005. AntHocNet: An adaptive nature-inspired algorithm for routing in mobile ad hoc networks. European Transactions on Telecommunications 16, 443--455.Ding Ding, Lei Liu, and Hartmut Schmeck. 2010. Service discovery in self-organizing service-oriented environments. In Proceedings of the 2010 IEEE Asia-Pacific Services Computing Conference. 717--724.Sergey N. Dorogovtsev and Jose F. F. Mendes. 2003. Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press.Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and Anthony Karageorgos. 2011. Self-Organizing Software: From Natural to Artificial Adaptation. Natural Computing Series.Erik Einhorn and Andreas Mitschele-Thiel. 2008. RLTE: Reinforcement learning for traffic-engineering. In Proceedings of the 2nd International Conference on Autonomous Infrastructure, Management, and Security. 120--133.Nelson Fernandez, Carlos Maldonado, and Carlos Gershenson. 2014. Information measures of complexity, emergence, self-organization, homeostasis, and autopoiesis. In Guided Self-Organization: Inception. Emergence, Complexity and Computation, Vol. 9. Springer, 19--51. DOI: http://dx.doi.org/10.1007/978-3-642-53734-9_2Jose Luis Fernandez-Marquez, Josep Lluis Arcos, and Giovanna Di Marzo Serugendo. 2012. A decentralized approach for detecting dynamically changing diffuse event sources in noisy WSN environments. Applied Artificial Intelligence 26, 4, 376--397. DOI: http://dx.doi.org/10.1080/08839514.2012.653659Agostino Forestiero, Carlo Mastroianni, and Michela Meo. 2009. Self-Chord: A bio-inspired algorithm for structured P2P systems. In Proceedings of the 9th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing. 44--51.Matthew E. Gaston and Marie des Jardins. 2005. Agent-organized networks for multi-agent production and exchange. In Proceedings of the 20th AAAI Conference on Artificial Intelligence. 77--82.Nathan Griffiths and Michael Luck. 2010. Changing neighbours: Improving tag-based cooperation. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems. 249--256.Peter Haase, Ronny Siebes, and Frank van Harmelen. 2008. Expertise-based peer selection in peer-to-peer networks. Knowledge and Information Systems 15, 1, 75--107.Philip N. Howard, Lee Rainee, and Steve Jones. 2001. Days and nights on the Internet. American Behavioural Scientist, 383--404.Bernardo A. Huberman and Lada A. Adamic. 2000. The nature of markets in the WWW. Quarterly Journal of Electronic Commerce 1, 5--12.Michael N. Huhns et al. 2005. Research directions for service-oriented multiagent systems. IEEE Internet Computing 9, 6, 65--70.Tomoko Itao, Tatsuya Suda, Tetsuya Nakamura, Miyuki Imada, Masato Matsuo, and Tomonori Aoyama. 2001. Jack-in-the-Net: Adaptive networking architecture for service emergence. In Proceedings of the Asian-Pacific Conference on Communications. 9.Emily M. Jin, Michelle Girvan, and Mark E. J. Newman. 2001. Structure of growing social networks. Physical Review E 64, 4, 046132.Sachin Kamboj and Keith S. Decker. 2007. Organizational self-design in semi-dynamic environments. In Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems. 335--337.Rahamatullah Khondoker, S. M. Taslim Arif, Nathan Kerr, and Dennis Schwerdel. 2011. Self-organizing communication services in future network architectures. In Proceedings of the 5th International Workshop on Self-Organizing Systems.Matthias Klusch, Benedikt Fries, and Katia Sycara. 2009. OWLS-MX: A hybrid Semantic Web service matchmaker for OWL-S services. Web Semantics Science Services and Agents on the World Wide Web 7, 2, 121--133.Dionisis Kontominas, Paraskevi Raftopoulou, Christos Tryfonopoulos, and Euripides G. M. Petrakis. 2013. DS4: A distributed social and semantic search system. Advances in Information Retrieval 7814, 832--836.Ramachandra Kota, Nicholas Gibbins, and Nicholas R. Jennings. 2012. Decentralized approaches for self-adaptation in agent organizations. ACM Transactions on Autonomous and Adaptive Systems 7, 1, Article No. 1.Paul Lazarsfeld. 1954. Friendship as a social process: A substantive and methodological analysis. In Freedom and Control in Modern Society. Van Nostrand, New York, NY.Paulo Leito. 2013. Towards self-organized service-oriented multi-agent systems. In Service Orientation in Holonic and Multi Agent Manufacturing and Robotics. Studies in Computational Intelligence, Vol. 472. Springer, 41--56.W. Sabrina Lin, Hong Vikcy Zhao, and K. J. Ray Liu. 2009. Incentive cooperation strategies for peer-to-peer live multimedia streaming social networks. IEEE Transactions on Multimedia 11, 3, 396--412.Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. 2001. Semantic Web services. IEEE Intelligent Systems 16, 2, 46--53.Miller McPherson, Lynn Smith-Lovin, and James Cook. 2001. Birds of a feather: Homophily in social networks. Annual Review of Sociology 27, 415--444.Vivek Nallur and Rami Bahsoon. 2012. A decentralized self-adaptation mechanism for service-based applications in the cloud. IEEE Transactions on Software Engineering 99, 591--612.Aris Ouksel, Yair Babad, and Thomas Tesch. 2004. Matchmaking software agents in B2B markets. In Proceedings of the 37th Annual Hawaii International Conference on System Sciences. 1--9.Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara. 2002. Semantic matching of Web services capabilities. In Proceedings of the 1st International Semantic Web Conference. 333--347.Leonid Peshkin and Virginia Savova. 2002. Reinforcement learning for adaptive routing. In Proceedings of the 2002 International Conference on Neural Networks (IJCNN’02). 1825--1830.Paraskevi Raftopoulou and Euripides G. M. Petrakis. 2008. iCluster: A self-organizing overlay network for P2P information retrieval. In Proceedings of the 30th European Conference on Advances in Information Retrieval (ECIR’08). 65--76.Sharmila Savarimuthu, Maryam Purvis, Martin Purvis, and Bastin Tony Roy Savarimuthu. 2011. Mechanisms for the self-organization of peer groups in agent societies. In Multi-Agent-Based Simulation XI. Lecture Notes in Computer Science, Vol. 6532. Springer, 93--107.Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and Anthony Karageorgos. 2005. Self-organization in multi-agent systems. Knowledge Engineering Review 20, 2, 165--189.Abdul Khalique Shaikh, Saadat M. Alhashmi, and Rajendran Parthiban. 2012. A semantic impact in decentralized resource discovery mechanism for grid computing environments. In Algorithms and Architectures for Parallel Processing. Lecture Notes in Computer Science, Vol. 7440. Springer, 206--216.Qixiang Sun and Hector Garcia-Molina. 2004. SLIC: A selfish link-based incentive mechanism for unstructured peer-to-peer networks. In Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04). 506--515.Mirko Viroli and Franco Zambonelli. 2010. A biochemical approach to adaptive service ecosystems. Information Sciences 180, 10, 1876--1892. DOI: http://dx.doi.org/10.1016/j.ins.2009.11.021Li Wang. 2011. SoFA: An expert-driven, self-organization peer-to-peer semantic communities for network resource management. Expert Systems with Applications 38, 1, 94--105.Kevin Werbach. 2000. Syndication—the emerging model for business in the Internet era. Harvard Business Review 78, 3, 84--93, 214.Tom Wolf and Tom Holvoet. 2005. Emergence versus self-organisation: Different concepts but promising when combined. In Engineering Self-Organising Systems. Lecture Notes in Computer Science, Vol. 3464. Springer, 1--15.Haizheng Zhang, W. Bruce Croft, Brian Levine, and Victor Lesser. 2004. A multi-agent approach for peer-to-peer based information retrieval system. In Proceedings of the 3rd International Conference on Autonomous Agents and Multiagent Systems, Vol. 1. 456--463.Ming Zhong. 2006. Popularity-biased random walks for peer-to-peer search under the square-root principle. In Proceedings of the 5th International Workshop on Peer-to-Peer Systems

    Semantic-based policy engineering for autonomic systems

    No full text
    This paper presents some important directions in the use of ontology-based semantics in achieving the vision of Autonomic Communications. We examine the requirements of Autonomic Communication with a focus on the demanding needs of ubiquitous computing environments, with an emphasis on the requirements shared with Autonomic Computing. We observe that ontologies provide a strong mechanism for addressing the heterogeneity in user task requirements, managed resources, services and context. We then present two complimentary approaches that exploit ontology-based knowledge in support of autonomic communications: service-oriented models for policy engineering and dynamic semantic queries using content-based networks. The paper concludes with a discussion of the major research challenges such approaches raise

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    Semantically Resolving Type Mismatches in Scientific Workflows

    No full text
    Scientists are increasingly utilizing Grids to manage large data sets and execute scientific experiments on distributed resources. Scientific workflows are used as means for modeling and enacting scientific experiments. Windows Workflow Foundation (WF) is a major component of Microsoft’s .NET technology which offers lightweight support for long-running workflows. It provides a comfortable graphical and programmatic environment for the development of extended BPEL-style workflows. WF’s visual features ease the syntactic composition of Web services into scientific workflows but do nothing to assure that information passed between services has consistent semantic types or representations or that deviant flows, errors and compensations are handled meaningfully. In this paper we introduce SAWSDL-compliant annotations for WF and use them with a semantic reasoner to guarantee semantic type correctness in scientific workflows. Examples from bioinformatics are presented

    Is a Semantic Web Agent a Knowledge-Savvy Agent?

    No full text
    The issue of knowledge sharing has permeated the field of distributed AI and in particular, its successor, multiagent systems. Through the years, many research and engineering efforts have tackled the problem of encoding and sharing knowledge without the need for a single, centralized knowledge base. However, the emergence of modern computing paradigms such as distributed, open systems have highlighted the importance of sharing distributed and heterogeneous knowledge at a larger scale—possibly at the scale of the Internet. The very characteristics that define the Semantic Web—that is, dynamic, distributed, incomplete, and uncertain knowledge—suggest the need for autonomy in distributed software systems. Semantic Web research promises more than mere management of ontologies and data through the definition of machine-understandable languages. The openness and decentralization introduced by multiagent systems and service-oriented architectures give rise to new knowledge management models, for which we can’t make a priori assumptions about the type of interaction an agent or a service may be engaged in, and likewise about the message protocols and vocabulary used. We therefore discuss the problem of knowledge management for open multi-agent systems, and highlight a number of challenges relating to the exchange and evolution of knowledge in open environments, which pertinent to both the Semantic Web and Multi Agent System communities alike

    Integration via Meaning: Using the Semantic Web to deliver Web Services

    Get PDF
    Presented at the CRIS2002 Conference in Kassel.-- 9 pages.-- Contains: Conference paper (PDF) + PPT presentation.The major developments of the World Wide Web (WWW) in the last two years have been Web Services and the Semantic Web. The former allows the construction of distributed systems across the WWW by providing a lightweight middleware architecture. The latter provides an infrastructure for accessing resources on the WWW via their relationships with respect to conceptual descriptions. In this paper, I shall review the progress undertaken in each of these two areas. Further, I shall argue that in order for the aims of both the Semantic Web and the Web Services activities to be successful, then the Web Service architecture needs to be augmented by concepts and tools of the Semantic Web. This infrastructure will allow resource discovery, brokering and access to be enabled in a standardised, integrated and interoperable manner. Finally, I survey the CLRC Information Technology R&D programme to show how it is contributing to the development of this future infrastructure
    • 

    corecore