5,231 research outputs found

    A Semantic Hierarchy for Erasure Policies

    Get PDF
    We consider the problem of logical data erasure, contrasting with physical erasure in the same way that end-to-end information flow control contrasts with access control. We present a semantic hierarchy for erasure policies, using a possibilistic knowledge-based semantics to define policy satisfaction such that there is an intuitively clear upper bound on what information an erasure policy permits to be retained. Our hierarchy allows a rich class of erasure policies to be expressed, taking account of the power of the attacker, how much information may be retained, and under what conditions it may be retained. While our main aim is to specify erasure policies, the semantic framework allows quite general information-flow policies to be formulated for a variety of semantic notions of secrecy.Comment: 18 pages, ICISS 201

    Matchmaking for covariant hierarchies

    Get PDF
    We describe a model of matchmaking suitable for the implementation of services, rather than their for their discovery and composition. In the model, processing requirements are modelled by client requests and computational resources are software processors that compete for request processing as the covariant implementations of an open service interface. Matchmaking then relies on type analysis to rank processors against requests in support of a wide range of dispatch strategies. We relate the model to the autonomicity of service provision and briefly report on its deployment within a production-level infrastructure for scientic computing

    Provably correct Java implementations of Spi Calculus security protocols specifications

    Get PDF
    Spi Calculus is an untyped high level modeling language for security protocols, used for formal protocols specification and verification. In this paper, a type system for the Spi Calculus and a translation function are formally defined, in order to formalize the refinement of a Spi Calculus specification into a Java implementation. The Java implementation generated by the translation function uses a custom Java library. Formal conditions on such library are stated, so that, if the library implementation code satisfies such conditions, then the generated Java implementation correctly simulates the Spi Calculus specification. A verified implementation of part of the custom library is further presente

    Understanding and Enforcing Opacity

    Full text link
    Abstractā€”This paper puts a spotlight on the specification and enforcement of opacity, a security policy for protecting sensitive properties of system behavior. We illustrate the fine granularity of the opacity policy by location privacy and privacy-preserving aggregation scenarios. We present a frame-work for opacity and explore its key differences and formal connections with such well-known information-flow models as noninterference, knowledge-based security, and declassifica-tion. Our results are machine-checked and parameterized in the observational power of the attacker, including progress-insensitive, progress-sensitive, and timing-sensitive attackers. We present two approaches to enforcing opacity: a whitebox monitor and a blackbox sampling-based enforcement. We report on experiments with prototypes that utilize state-of-the-art Satisfiability Modulo Theories (SMT) solvers and the random testing tool QuickCheck to establish opacity for the location and aggregation-based scenarios. I

    Creating a Relational Distributed Object Store

    Full text link
    In and of itself, data storage has apparent business utility. But when we can convert data to information, the utility of stored data increases dramatically. It is the layering of relation atop the data mass that is the engine for such conversion. Frank relation amongst discrete objects sporadically ingested is rare, making the process of synthesizing such relation all the more challenging, but the challenge must be met if we are ever to see an equivalent business value for unstructured data as we already have with structured data. This paper describes a novel construct, referred to as a relational distributed object store (RDOS), that seeks to solve the twin problems of how to persistently and reliably store petabytes of unstructured data while simultaneously creating and persisting relations amongst billions of objects.Comment: 12 pages, 5 figure

    Goal driven theorem proving using conceptual graphs and Peirce logic

    Get PDF
    The thesis describes a rational reconstruction of Sowa's theory of Conceptual Graphs. The reconstruction produces a theory with a firmer logical foundation than was previously the case and which is suitable for computation whilst retaining the expressiveness of the original theory. Also, several areas of incompleteness are addressed. These mainly concern the scope of operations on conceptual graphs of different types but include extensions for logics of higher orders than first order. An important innovation is the placing of negation onto a sound representational basis. A comparison of theorem proving techniques is made from which the principles of theorem proving in Peirce logic are identified. As a result, a set of derived inference rules, suitable for a goal driven approach to theorem proving, is developed from Peirce's beta rules. These derived rules, the first of their kind for Peirce logic and conceptual graphs, allow the development of a novel theorem proving approach which has some similarities to a combined semantic tableau and resolution methodology. With this methodology it is shown that a logically complete yet tractable system is possible. An important result is the identification of domain independent heuristics which follow directly from the methodology. In addition to the theorem prover, an efficient system for the detection of selectional constraint violations is developed. The proof techniques are used to build a working knowledge base system in Prolog which can accept arbitrary statements represented by conceptual graphs and test their semantic and logical consistency against a dynamic knowledge base. The same proof techniques are used to find solutions to arbitrary queries. Since the system is logically complete it can maintain the integrity of its knowledge base and answer queries in a fully automated manner. Thus the system is completely declarative and does not require any programming whatever by a user with the result that all interaction with a user is conversational. Finally, the system is compared with other theorem proving systems which are based upon Conceptual Graphs and conclusions about the effectiveness of the methodology are drawn

    Machine Understandable Policies and GDPR Compliance Checking

    Full text link
    The European General Data Protection Regulation (GDPR) calls for technical and organizational measures to support its implementation. Towards this end, the SPECIAL H2020 project aims to provide a set of tools that can be used by data controllers and processors to automatically check if personal data processing and sharing complies with the obligations set forth in the GDPR. The primary contributions of the project include: (i) a policy language that can be used to express consent, business policies, and regulatory obligations; and (ii) two different approaches to automated compliance checking that can be used to demonstrate that data processing performed by data controllers / processors complies with consent provided by data subjects, and business processes comply with regulatory obligations set forth in the GDPR

    Big Data and Analytics in the Age of the GDPR

    Get PDF
    The new European General Data Protection Regulation places stringent restrictions on the processing of personally identifiable data. The GDPR does not only affect European companies, as the regulation applies to all the organizations that track or provide services to European citizens. Free exploratory data analysis is permitted only on anonymous data, at the cost of some legal risks.We argue that for the other kinds of personal data processing, the most flexible and safe legal basis is explicit consent. We illustrate the approach to consent management and compliance with the GDPR being developed by the European H2020 project SPECIAL, and highlight some related big data aspects
    • ā€¦
    corecore