65,991 research outputs found

    Aspect-Oriented Framework for Web Services (AoF4WS)

    Get PDF
    This chapter presents our research initiative known as aspect-oriented framework for Web services (AoF4WS). This initiative looks into the role of aspect-oriented programming in enhancing Web services with nonfunctional properties that are orthogonal to the primary functional properties of Web services, without the need for extensive reprogramming. This enhancement achieves a separation between the functional and nonfunctional aspects of Web services, thereby resulting in easier adaptability and maintainability. We have initially chosen to focus on security and self-healing nonfunctional requirements. The AoF4WS initiative is therefore demonstrated using two projects, SC-WS and SHWS, which respectively stand for security concerns of Web services and self-healing Web services. Our contributions are relevant to the design phase in an aspect-oriented software development lifecycle

    Aspect-oriented framework for web services (AoF4WS): Introduction and two example case studies

    Get PDF
    This chapter presents our research initiative known as aspect-oriented framework for Web services (AoF4WS). This initiative looks into the role of aspect-oriented programming in enhancing Web services with nonfunctional properties that are orthogonal to the primary functional properties of Web services, without the need for extensive reprogramming. This enhancement achieves a separation between the functional and nonfunctional aspects of Web services, thereby resulting in easier adaptability and maintainability. We have initially chosen to focus on security and self-healing nonfunctional requirements. The AoF4WS initiative is therefore demonstrated using two projects, SC-WS and SH-WS, which respectively stand for security concerns of Web services and self-healing Web services. Our contributions are relevant to the design phase in an aspect-oriented software development lifecycle. © 2009, IGI Global

    DISC: A declarative framework for self-healing Web services composition

    Get PDF
    International audienceWeb services composition design, verification and monitoring are active and widely studied research directions. Little work however has been done in integrating these related dimensions using a unified formalism. In this paper we propose a declarative event-oriented framework, called DISC, that serves as a unified framework to bridge the gap between the process design, verification and monitoring. Proposed framework allows for a composition design to accommodate various aspects such as data relationships and constraints, Web services dynamic binding, compliance regulations, security or temporal requirements and others. Then, it allows for instantiating, verifying and executing the composition design and for monitoring the process while in execution. The effect of run-time violations can also be calculated and a set of recovery actions can be taken, allowing for the self-healing Web services composition

    Autonomous Fault Detection in Self-Healing Systems using Restricted Boltzmann Machines

    Get PDF
    Autonomously detecting and recovering from faults is one approach for reducing the operational complexity and costs associated with managing computing environments. We present a novel methodology for autonomously generating investigation leads that help identify systems faults, and extends our previous work in this area by leveraging Restricted Boltzmann Machines (RBMs) and contrastive divergence learning to analyse changes in historical feature data. This allows us to heuristically identify the root cause of a fault, and demonstrate an improvement to the state of the art by showing feature data can be predicted heuristically beyond a single instance to include entire sequences of information.Comment: Published and presented in the 11th IEEE International Conference and Workshops on Engineering of Autonomic and Autonomous Systems (EASe 2014

    Exploiting peer group concept for adaptive and highly available services

    Full text link
    This paper presents a prototype for redundant, highly available and fault tolerant peer to peer framework for data management. Peer to peer computing is gaining importance due to its flexible organization, lack of central authority, distribution of functionality to participating nodes and ability to utilize unused computational resources. Emergence of GRID computing has provided much needed infrastructure and administrative domain for peer to peer computing. The components of this framework exploit peer group concept to scope service and information search, arrange services and information in a coherent manner, provide selective redundancy and ensure availability in face of failure and high load conditions. A prototype system has been implemented using JXTA peer to peer technology and XML is used for service description and interfaces, allowing peers to communicate with services implemented in various platforms including web services and JINI services. It utilizes code mobility to achieve role interchange among services and ensure dynamic group membership. Security is ensured by using Public Key Infrastructure (PKI) to implement group level security policies for membership and service access.Comment: The Paper Consists of 5 pages, 6 figures submitted in Computing in High Energy and Nuclear Physics, 24-28 March 2003 La Jolla California. CHEP0

    Policy-based autonomic control service

    Get PDF
    Recently, there has been a considerable interest in policy-based, goal-oriented service management and autonomic computing. Much work is still required to investigate designs and policy models and associate meta-reasoning systems for policy-based autonomic systems. In this paper we outline a proposed autonomic middleware control service used to orchestrate selfhealing of distributed applications. Policies are used to adjust the systems autonomy and define self-healing strategies to stabilize/correct a given system in the event of failures
    corecore