

Badr, N. and Reilly, D. and Taleb-Bendiab, A. (2004) Policy-based
autonomic control service. In, Proceedings of the Fifth IEEE
International Workshop on Policies for Distributed Systems and
Networks (POLICY’04), 7-9 June 2004, pages pp. 99-102, Yorktown
Heights, New York.

http://eprints.gla.ac.uk/3388/

Glasgow ePrints Service
http://eprints.gla.ac.uk

1

Policy-Based Autonomic Control Service

N. Badr
School of Computing and

Mathematical Science,
Liverpool John Moores

University,
Byrom Street, Liverpool

L3 3AF, UK
cmsnbadr@livjm.ac.uk

A. Taleb-Bendiab
School of Computing and

Mathematical Science,
Liverpool John Moores

University,
Byrom Street, Liverpool

L3 3AF, UK
a.talebbendiab@livjm.ac.uk

D. Reilly
School of Computing and

Mathematical Science,
Liverpool John Moores

University,
Byrom Street, Liverpool

L3 3AF, UK
d.reilly@livjm.ac.uk

Abstract

Recently, there has been a considerable interest in
policy-based, goal-oriented service management and
autonomic computing. Much work is still required to
investigate designs and policy models and associate
meta-reasoning systems for policy-based autonomic
systems. In this paper we outline a proposed autonomic
middleware control service used to orchestrate self-
healing of distributed applications. Policies are used to
adjust the systems autonomy and define self-healing
strategies to stabilize/correct a given system in the event
of failures.

1. Introduction

Recently, there has been a considerable interest in
both policy-based management, goal-based service
management and autonomic distributed systems
management [1-9]. Policies are often encoded as rules to
specify for instance systems security, management
properties, allowable states and/or obligations. Based on
an ongoing study into requirements for self-adaptive
software engineering and management, this paper outlines
the interplay of self-managing and self-healing policies
and deliberative reasoning models to orchestrate, enable
and/or adjust application autonomy. The paper describes
a prototype policy-based autonomic system, which is
deployed as a middleware service. The system is based
on: service manager, system controller and JavaSpaces,
and self-healing policy repository.

The remainder of the paper is structured as follows:
section 2 provides background material relating to our
approach and in particular describes current trends in
autonomic-based management and policy-based
management approaches. Section 3, provides an overview
of the policy-based autonomic control service. Section 4,

describes the development of the control service based on
Jini middleware technology. Section 5, presents a case
study and section 6, draws overall conclusions and
mentions future work.

2. Background

Recent research has focused on the development of
methods and techniques to support runtime management
and self-governance of distributed applications, which is
reviewed briefly below.

2.1 Policy-Based Management

Much research has addressed the use of policies for
dynamic management of large distributed systems [1-3].
Moffett et al. [3] stated the necessity of representing and
manipulating policy management of distributed systems.
In policy management, action policies are represented as a
policy hierarchy, where each policy in the hierarchy
represents a plan that meets a specific objective. Sloman
and Lupu [10] studied authorization and obligation
policies’ specification for programmable networks. Such
policies are interpreted to facilitate runtime activation, de-
activation and/or their modification without having to
shutdown the network node. Other approaches to policy-
based management have used condition-action rules to
support a static policy configuration-based solution, in
which human intervention is required for system
reconfiguration and policy deployment. Moffett et al. [11]
have proposed a framework for supporting automated
policy deployment and flexible event triggers to permit
dynamic policy configuration, focusing on solutions for
dynamic adaptation of policies in response to changes
within the managed environment. Other research efforts
have focused on policy specification and enforcement for
dynamic service management. For instance, the IETF

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04)
0-7695-2141-X/04 $ 20.00 © 2004 IEEE

2

Policy Working Group is developing a QoS network
management framework using the X.500 directory service,
where policies are encoded as If-Then rules and stored in
directories [12].

Figure 1: Autonomic management process model.

2.2 Autonomic-Based Management

Within the distributed system community work is
underway to understand and design autonomic computing
systems endowed with self-management and abilities to
adjust to unpredictable changes [13]. The two main
elements of autonomic management are the functional
unit and the management unit. The functional unit
performs the main operation and is provided by elements
such as web services or databases. The management unit
is responsible for system resources and operational
performance and hence the reconfiguration of resources
according to adaptive changes [5]. Autonomic systems
have been defined by IBM [6] as system that have “… The
ability to manage themselves and dynamically adapt to
change in accordance with policies and objectives…”.
In other words, they have the ability to monitor, diagnose
and heal themselves. This entails that systems have the
ability to dynamically insert and remove code at runtime.
Hot swapping [8, 9] is proposed as a means to enable
autonomic software systems to interpose and/or replace
components (code) in response of either failure or
software maintenance.

3. Policy-Based Autonomic Control Service

Autonomic systems must discharge the intended self-
management functionality in a safe, controllable and
predictable manner avoiding any emerging, accidental
errors or undesirable features [9-12]. This therefore
requires that autonomic systems extend and integrate
autonomic control models with policy-based service [9].
This formed the motivation for our work, which provides a
self-governance mechanism based on a developed

Extensible Believe, Desire and Intension (EBDI) model for
deliberative systems. The EBDI model is used to guide
and manage an autonomic application’s self-healing
processes.

Figure 1 illustrates the autonomic management and
interaction model used to monitor an application. The
overall process starts with the monitoring process to
detect conflicts using the control service internal and
external polices. This followed by the diagnosis process
and then the repair strategies, which are based on the
proposed EBDI model (Sec. 4). The strategies are
embedded in an external format such as XML, which may
be parsed and translated into executable format by the
system interpreter. In addition the distributed shared
space is used to facilitate the remote integration and
coordination of the distributed control services.

Figure 2:The control service architectural layer
s.

4. Design of the Proposed Control Service

As shown in Figure 2, the design of the policy-based
autonomic control service combines three main services:

• Service Manager: is used to adapt the structural
components and the dynamic behaviour of the
services they provide. Structural components can
evaluate their behaviour and environment against
their specified goals with capabilities to revise
their structure and behaviour accordingly [20].
This separation into distinct service managers
eases their management by decentralizing the
control of each individual application-level
service. Service managers look after their
application-level service and monitor its
behaviour using an external and internal policies.

• JavaSpace Service: is a persistent distributed
shared memory used by the self-healing process
for awareness and coordination. It stores the
required information and reports service states
for use by the system controller service to repair
and reconfigure the system in the event of any

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04)
0-7695-2141-X/04 $ 20.00 © 2004 IEEE

3

service failures. The JavaSpace service uses
external policies to notify the system controller
directly with remote events. The remote events
may either notify of changes in application-level
service states (as reported by the service
manager) or notify the system controller if the
lease of a service manager should expire.

• System Controller: is responsible for the
dynamic reconfiguration of a given application
by coordinating the activities of individual
service managers. Each manager is used as a
meta-service to monitor, repair and adapt its
associated application-level services in the event
of conflicts/failures. Service managers may then
report their associated application-level service
states using the JavaSpace service. Associated
external policies can either trigger a notification
event to the system controller or request a
system controller service’s activation to monitor
a given application service states. For example,
the action shown below may be used if the
average latency of the control process exceeds
the maximum allowed latency. If such a case
occurs the control rule detects and triggers an
execution failure notification leading to a self-
healing process.

The development of system repair strategies and self-
healing control is based on our proposed Extensible
Beliefs, Desires and Intension (EBDI) model [11-13]. The
model is concerned with situated intentional software that
continuously monitors and/or observes its environment
and acts to changes in accordance with its sets of policies.

This architecture is based on a control service model
that follows a cycle of monitoring the target application,
detecting undesirable behaviours (events), identifying
conflicts/errors, prescribing remedial action plans and
enacting change plans through reconfiguration1.

1 A full description of the design and implementation of the
autonomic middleware control service is out of the scope of this
paper and can be found in a longer version of this paper [12].

Figure 3: The Architectural view of the EmergeIT
S

appl icat ion.

5. Case Study
The policy-based autonomic control service has been

developed and demonstrated through an industrial case-
study, namely EmergeITS [12]. The latter was developed
using Jini middleware as a proof-of-concept for self-
healing software for intelligent networked appliances
(vehicles). The case-study was developed in collaboration
with the Merseyside Emergency Fire Service (Fig. 4). One
of the EmergeITS services evaluated was the 3-in-1 phone,
which allows a mobile phone or PDA device to be used in
one of three different modes: a cellular phone, a WAP
phone or a walkie-talkie. The 3-in-1 phone may be used for
either voice communication or to receive multimedia
content, subject to the requirements of the user and
availability of a communication service provider. An
autonomic middleware control service prototype was
incorporated into the case study to provide the meta-
control software to support EmergeITS over the network.

The 3-in-1phone service is hosted by an in-vehicle
computer, which also acts as a gateway. If the local
service deployment should fail, then a service manager is
started to provide self-monitoring, self-diagnosis, self-
repair and self-adaptation. In the event of failure, the
service manager will select an appropriate repair strategy,
thereby providing a degree of conflict resolution and fault
tolerance. The service manager stores the 3-in-1 phone
service state in a JavaSpace service and the system
controller may check these states against external policies.

 If (control_avLatency is larger than
 control_maxLatency)
 start
 conflict_monitor(true);
 start_control_process();
 end;

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04)
0-7695-2141-X/04 $ 20.00 © 2004 IEEE

4

Figure 6:The XML descript ion of a self−repair str
ategy.

7. Conclusions and Future Work

 In this paper we have described the development of a
policy-based autonomic control service, which has been
implemented using Jini middleware technology. The
control service incorporates the policies (either internal or
external) within the architecture of the autonomic control
service to achieve policy-based autonomic control of
distributed applications at run time.
 We have briefly described the proposed Extensible BDI
(EBDI), which is a policy (normative)-based model that is
used to examine the system external policies and for
generating the appropriate repair strategy at runtime.
 We have described the main services of our policy-
based autonomic control service (service manager,
JavaSpace service and system controller service) and
demonstrated their use to control a 3-in-1-phone
application service. In addition we have evaluated the
performance of the autonomic control service using the
elapsed time and the average latency as metrics of the
system at runtime.
 In our future work, we intend to improve/enhance the
autonomic control service on two main fronts: self-
protection and machine learning. There is a need to
provide self-protection to provide security in
untrustworthy environments. There is also a need to equip
the current model with the machine learning capabilities so
that the policy-based autonomic control service can
access history and knowledge relating to the previous
failure cases.

8. References

1. E. Lupu, et al. A Policy Based Role Framework for
Access Control. in First ACM/NIST Workshop on

Role-Based Access Control. 1995. Maryland USA:
ACM.

2. J. Moffett and M.Sloman, Policy Hierarchies for
Distributed Systems Management. IEEE Journal on
Selected Areas in Communications, 1993. 11: p. 1404-
1414.

3. K. Yoshihara, M.Isomura, and H.Horiuchi. Distributed
Policy-based Management Enabling Policy
Adaptation on Monitoring using Active Network
Technology. in 12th IFIP/IEEE International
Workshop on Distributed Systems: Operations and
Management. 2001. Nancy France.

4. D. Chess, C.Palmer, and S.White, Security an
autonomic computing environment. IBM SYSTEMS
JOURNAL, 2003. 42.

5. J. Appavoo, et al., Enabling autonomic behavior in
systems software with hot swapping,. IBM SYSTEMS
JOURNAL, 2003. 42.

6. M. Sloman and E. Lupu. Policy Specification for
Programmable Networks. in First International
Working Conference on Active Networks (IWAN'99).
1999. Berlin.

7. K. Barber, et al. Conflict Representation and
Classification in a Domain Independent Conflict
Management Framework . in the Third International
Conference on Autonomous Agents. 1999. Seattle
WA.

8. P. Horn, Autonomic Computing: IBM's Perspective
on the State of Information Technology. IBM
Corporation, 2001.

9. D. Reilly, et al. An Instrumentation and Control-
Based Approach for Distributed Application
Management and Adaptation. in Workshop on Self-
Healing Systems (WOSS'02). 2002. Charleston SC
USA.

10. N. Badr, D. Reilly, and A. Taleb-Bendiab. A Conflict
Resolution Control Architecture for Self-Adaptive
Software, in the International Workshop on
Architecting Dependable Systems: WADS 2002
(ICSE 2002). 2002. Florida USA.

11. N. Badr, An Investigation into Autonomic
Middleware Control Service to Support Distributed
Self-Adaptive Software, PhD thesis, School of
Computing and Mathematical Sciences, Liverpool
JMU, 2003, www.cms.livjm.ac.uk/cmsnbadr.

12. N. Badr, D. Reilly and A. Taleb-Bendiab, "Policy-
Based Autonomic Control Service", Technical
Report, School of Computing and Mathematical
Sciences, Liverpool JMU, 2004,
www.cms.livjm.ac.uk/cmsnbadr.

13. M. Bratman, Intentions, Plans, and Practical Reason.
Harvard University Press, 1987.

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04)
0-7695-2141-X/04 $ 20.00 © 2004 IEEE

	Citation.template.pdf
	http://eprints.gla.ac.uk/3388/

	footer1:

