22 research outputs found

    Security and accuracy of fingerprint-based biometrics: A review

    Get PDF
    Biometric systems are increasingly replacing traditional password- and token-based authentication systems. Security and recognition accuracy are the two most important aspects to consider in designing a biometric system. In this paper, a comprehensive review is presented to shed light on the latest developments in the study of fingerprint-based biometrics covering these two aspects with a view to improving system security and recognition accuracy. Based on a thorough analysis and discussion, limitations of existing research work are outlined and suggestions for future work are provided. It is shown in the paper that researchers continue to face challenges in tackling the two most critical attacks to biometric systems, namely, attacks to the user interface and template databases. How to design proper countermeasures to thwart these attacks, thereby providing strong security and yet at the same time maintaining high recognition accuracy, is a hot research topic currently, as well as in the foreseeable future. Moreover, recognition accuracy under non-ideal conditions is more likely to be unsatisfactory and thus needs particular attention in biometric system design. Related challenges and current research trends are also outlined in this paper

    Fingerprint template protection schemes: A literature review

    Get PDF
    The fingerprint is the most widely used technology for identification or authentication systems, which can be known as fingerprint authentication systems (FAS).In addition to providing security, the fingerprint is also easy to use, very reliable and has a high accuracy for identity recognition. FAS is still exposed to security attacks because fingerprint information is unencrypted.Therefore, fingerprint information requires protection known as fingerprint template protection (FTP).This paper aims to provide an organized literature on FTP.Three research questions were formulated to guide the literature analysis.First, this analysis focuses on the types of FTP schemes; second, the metrics used for evaluating the FTP schemes; and finally, the common datasets used for evaluating the FTP schemes. The latest information and references are analysed and classified based on FTP methods and publication year to obtain information related to the development and application of FTP.This study mainly surveyed 62 documents reported on FTP schemes between the year 2000 and 2017.The results of this survey can be a source of reference for other researchers in finding literature relevant to the FTP

    Security and accuracy of fingerprint-based biometrics: A review

    Get PDF
    Biometric systems are increasingly replacing traditional password- and token-based authentication systems. Security and recognition accuracy are the two most important aspects to consider in designing a biometric system. In this paper, a comprehensive review is presented to shed light on the latest developments in the study of fingerprint-based biometrics covering these two aspects with a view to improving system security and recognition accuracy. Based on a thorough analysis and discussion, limitations of existing research work are outlined and suggestions for future work are provided. It is shown in the paper that researchers continue to face challenges in tackling the two most critical attacks to biometric systems, namely, attacks to the user interface and template databases. How to design proper countermeasures to thwart these attacks, thereby providing strong security and yet at the same time maintaining high recognition accuracy, is a hot research topic currently, as well as in the foreseeable future. Moreover, recognition accuracy under non-ideal conditions is more likely to be unsatisfactory and thus needs particular attention in biometric system design. Related challenges and current research trends are also outlined in this paper

    Privacy Protection in Distributed Fingerprint-based Authentication

    Full text link
    Biometric authentication is getting increasingly popular due to the convenience of using unique individual traits, such as fingerprints, palm veins, irises. Especially fingerprints are widely used nowadays due to the availability and low cost of fingerprint scanners. To avoid identity theft or impersonation, fingerprint data is typically stored locally, e.g., in a trusted hardware module, in a single device that is used for user enrollment and authentication. Local storage, however, limits the ability to implement distributed applications, in which users can enroll their fingerprint once and use it to access multiple physical locations and mobile applications afterwards. In this paper, we present a distributed authentication system that stores fingerprint data in a server or cloud infrastructure in a privacy-preserving way. Multiple devices can be connected and perform user enrollment or verification. To secure the privacy and integrity of sensitive data, we employ a cryptographic construct called fuzzy vault. We highlight challenges in implementing fuzzy vault-based authentication, for which we propose and compare alternative solutions. We conduct a security analysis of our biometric cryptosystem, and as a proof of concept, we build an authentication system for access control using resource-constrained devices (Raspberry Pis) connected to fingerprint scanners and the Microsoft Azure cloud environment. Furthermore, we evaluate the fingerprint matching algorithm against the well-known FVC2006 database and show that it can achieve comparable accuracy to widely-used matching techniques that are not designed for privacy, while remaining efficient with an authentication time of few seconds.Comment: This is an extended version of the paper with the same title which has been accepted for publication at the Workshop on Privacy in the Electronic Society (WPES 2019

    A Novel Fingerprint Encryption Based on Image and Feature Mosaic

    Get PDF
    Mobile smart devices in the digital era are enhancing personal information security by adopting fingerprint encryption technology, but due to the small size of mobile smart devices, the area of fingerprint image that can be detected is reduced, resulting in the lack of extractable fingerprint feature information, and traditional fingerprint encryption technology is difficult to apply to small area fingerprint images. To solve the application difficulties of small area fingerprint image encryption, a novel small area fingerprint encryption algorithm based on feature and image mosaic was proposed, and the encryption efficiency of the algorithm was verified using FVC2002 and XDFinger database. Results show that the small area fingerprint recognition algorithm based on feature and image mosaic is significantly improved in encryption efficiency, failure capture rate decreases from 36% to 7%, true acceptance rate increases from 44% to 68%, and the feasibility and reliability of the method is verified. Conclusions can promote the application of small area fingerprint encryption technology in mobile smart devices

    State of the Art in Biometric Key Binding and Key Generation Schemes

    Get PDF
    Direct storage of biometric templates in databases exposes the authentication system and legitimate users to numerous security and privacy challenges. Biometric cryptosystems or template protection schemes are used to overcome the security and privacy challenges associated with the use of biometrics as a means of authentication. This paper presents a review of previous works in biometric key binding and key generation schemes. The review focuses on key binding techniques such as biometric encryption, fuzzy commitment scheme, fuzzy vault and shielding function. Two categories of key generation schemes considered are private template and quantization schemes. The paper also discusses the modes of operations, strengths and weaknesses of various kinds of key-based template protection schemes. The goal is to provide the reader with a clear understanding of the current and emerging trends in key-based biometric cryptosystems

    Privacy-Preserving Biometric Authentication

    Full text link
    Biometric-based authentication provides a highly accurate means of authentication without requiring the user to memorize or possess anything. However, there are three disadvantages to the use of biometrics in authentication; any compromise is permanent as it is impossible to revoke biometrics; there are significant privacy concerns with the loss of biometric data; and humans possess only a limited number of biometrics, which limits how many services can use or reuse the same form of authentication. As such, enhancing biometric template security is of significant research interest. One of the methodologies is called cancellable biometric template which applies an irreversible transformation on the features of the biometric sample and performs the matching in the transformed domain. Yet, this is itself susceptible to specific classes of attacks, including hill-climb, pre-image, and attacks via records multiplicity. This work has several outcomes and contributions to the knowledge of privacy-preserving biometric authentication. The first of these is a taxonomy structuring the current state-of-the-art and provisions for future research. The next of these is a multi-filter framework for developing a robust and secure cancellable biometric template, designed specifically for fingerprint biometrics. This framework is comprised of two modules, each of which is a separate cancellable fingerprint template that has its own matching and measures. The matching for this is based on multiple thresholds. Importantly, these methods show strong resistance to the above-mentioned attacks. Another of these outcomes is a method that achieves a stable performance and can be used to be embedded into a Zero-Knowledge-Proof protocol. In this novel method, a new strategy was proposed to improve the recognition error rates which is privacy-preserving in the untrusted environment. The results show promising performance when evaluated on current datasets
    corecore