935 research outputs found

    An authentic-based privacy preservation protocol for smart e-healthcare systems in iot

    Get PDF
    © 2013 IEEE. Emerging technologies rapidly change the essential qualities of modern societies in terms of smart environments. To utilize the surrounding environment data, tiny sensing devices and smart gateways are highly involved. It has been used to collect and analyze the real-time data remotely in all Industrial Internet of Things (IIoT). Since the IIoT environment gathers and transmits the data over insecure public networks, a promising solution known as authentication and key agreement (AKA) is preferred to prevent illegal access. In the medical industry, the Internet of Medical Things (IoM) has become an expert application system. It is used to gather and analyze the physiological parameters of patients. To practically examine the medical sensor-nodes, which are imbedded in the patient\u27s body. It would in turn sense the patient medical information using smart portable devices. Since the patient information is so sensitive to reveal other than a medical professional, the security protection and privacy of medical data are becoming a challenging issue of the IoM. Thus, an anonymity-based user authentication protocol is preferred to resolve the privacy preservation issues in the IoM. In this paper, a Secure and Anonymous Biometric Based User Authentication Scheme (SAB-UAS) is proposed to ensure secure communication in healthcare applications. This paper also proves that an adversary cannot impersonate as a legitimate user to illegally access or revoke the smart handheld card. A formal analysis based on the random-oracle model and resource analysis is provided to show security and resource efficiencies in medical application systems. In addition, the proposed scheme takes a part of the performance analysis to show that it has high-security features to build smart healthcare application systems in the IoM. To this end, experimental analysis has been conducted for the analysis of network parameters using NS3 simulator. The collected results have shown superiority in terms of the packet delivery ratio, end-to-end delay, throughput rates, and routing overhead for the proposed SAB-UAS in comparison to other existing protocols

    An Efficient Lightweight Provably Secure Authentication Protocol for Patient Monitoring Using Wireless Medical Sensor Networks

    Get PDF
    The refurbishing of conventional medical network with the wireless medical sensor network has not only amplified the efficiency of the network but concurrently posed different security threats. Previously, Servati and Safkhani had suggested an Internet of Things (IoT) based authentication scheme for the healthcare environment promulgating a secure protocol in resistance to several attacks. However, the analysis demonstrates that the protocol could not withstand user, server, and gateway node impersonation attacks. Further, the protocol fails to resist offline password guessing, ephemeral secret leakage, and gateway-by-passing attacks. To address the security weaknesses, we furnish a lightweight three-factor authentication framework employing the fuzzy extractor technique to safeguard the user’s biometric information. The Burrows-Abadi-Needham (BAN) logic, Real-or-Random (ROR) model, and Scyther simulation tool have been imposed as formal approaches for establishing the validity of the proposed work. The heuristic analysis stipulates that the proposed work is impenetrable to possible threats and offers several security peculiarities like forward secrecy and three-factor security. A thorough analysis of the preexisting works with the proposed ones corroborates the intensified security and efficiency with the reduced computational, communication, and security overheads

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Efficient Authentication Algorithm for Secure Remote Access in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks convey mission critical data that calls for adequate privacy and security protection. To accomplish this objective, numerous intrusion detection schemes based on machine learning approaches have been developed. In addition, authentication and key agreements techniques have been developed using techniques such as elliptic curve cryptography, bilinear pairing operations, biometrics, fuzzy verifier and Rabin cryptosystems. However, these schemes have either high false positive rates, high communication, computation, storage or energy requirements, all of which are not ideal for battery powered sensor nodes. Moreover, majority of these algorithms still have some security and privacy challenges that render them susceptible to various threats. In this paper, a WSN authentication algorithm is presented that is shown to be robust against legacy WSN privacy and security attacks such as sidechannel, traceability, offline guessing, replay and impersonations. From a performance perspective, the proposed algorithm requires the least computation overheads and average computation costs among its peers

    Certificateless Algorithm for Body Sensor Network and Remote Medical Server Units Authentication over Public Wireless Channels

    Get PDF
    Wireless sensor networks process and exchange mission-critical data relating to patients’ health status. Obviously, any leakages of the sensed data can have serious consequences which can endanger the lives of patients. As such, there is need for strong security and privacy protection of the data in storage as well as the data in transit. Over the recent past, researchers have developed numerous security protocols based on digital signatures, advanced encryption standard, digital certificates and elliptic curve cryptography among other approaches. However, previous studies have shown the existence of many security and privacy gaps that can be exploited by attackers to cause some harm in these networks. In addition, some techniques such as digital certificates have high storage and computation complexities occasioned by certificate and public key management issues. In this paper, a certificateless algorithm is developed for authenticating the body sensors and remote medical server units. Security analysis has shown that it offers data privacy, secure session key agreement, untraceability and anonymity. It can also withstand typical wireless sensor networks attacks such as impersonation, packet replay and man-in-the-middle. On the other hand, it is demonstrated to have the least execution time and bandwidth requirements

    H2B: Heartbeat-based Secret Key Generation Using Piezo Vibration Sensors

    Full text link
    We present Heartbeats-2-Bits (H2B), which is a system for securely pairing wearable devices by generating a shared secret key from the skin vibrations caused by heartbeat. This work is motivated by potential power saving opportunity arising from the fact that heartbeat intervals can be detected energy-efficiently using inexpensive and power-efficient piezo sensors, which obviates the need to employ complex heartbeat monitors such as Electrocardiogram or Photoplethysmogram. Indeed, our experiments show that piezo sensors can measure heartbeat intervals on many different body locations including chest, wrist, waist, neck and ankle. Unfortunately, we also discover that the heartbeat interval signal captured by piezo vibration sensors has low Signal-to-Noise Ratio (SNR) because they are not designed as precision heartbeat monitors, which becomes the key challenge for H2B. To overcome this problem, we first apply a quantile function-based quantization method to fully extract the useful entropy from the noisy piezo measurements. We then propose a novel Compressive Sensing-based reconciliation method to correct the high bit mismatch rates between the two independently generated keys caused by low SNR. We prototype H2B using off-the-shelf piezo sensors and evaluate its performance on a dataset collected from different body positions of 23 participants. Our results show that H2B has an overwhelming pairing success rate of 95.6%. We also analyze and demonstrate H2B's robustness against three types of attacks. Finally, our power measurements show that H2B is very power-efficient

    Security Issues in Healthcare Applications Using Wireless Medical Sensor Networks: A Survey

    Get PDF
    Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs
    • …
    corecore